Metamath Proof Explorer


Theorem infrecl

Description: Closure of infimum of a nonempty bounded set of reals. (Contributed by NM, 8-Oct-2005) (Revised by AV, 4-Sep-2020)

Ref Expression
Assertion infrecl AAxyAxysupA<

Proof

Step Hyp Ref Expression
1 ltso <Or
2 1 a1i AAxyAxy<Or
3 infm3 AAxyAxyxyA¬y<xyx<yzAz<y
4 2 3 infcl AAxyAxysupA<