Description: The infimum of a set of reals A is the negative of the supremum of the negatives of its elements. The antecedent ensures that A is nonempty and has a lower bound. (Contributed by NM, 14-Jun-2005) (Revised by AV, 4-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | infrenegsup | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infrecl | |
|
2 | 1 | recnd | |
3 | 2 | negnegd | |
4 | negeq | |
|
5 | 4 | cbvmptv | |
6 | 5 | mptpreima | |
7 | eqid | |
|
8 | 7 | negiso | |
9 | 8 | simpri | |
10 | 9 | imaeq1i | |
11 | 6 10 | eqtr3i | |
12 | 11 | supeq1i | |
13 | 8 | simpli | |
14 | isocnv | |
|
15 | 13 14 | ax-mp | |
16 | isoeq1 | |
|
17 | 9 16 | ax-mp | |
18 | 15 17 | mpbi | |
19 | 18 | a1i | |
20 | simp1 | |
|
21 | infm3 | |
|
22 | vex | |
|
23 | vex | |
|
24 | 22 23 | brcnv | |
25 | 24 | notbii | |
26 | 25 | ralbii | |
27 | 23 22 | brcnv | |
28 | vex | |
|
29 | 23 28 | brcnv | |
30 | 29 | rexbii | |
31 | 27 30 | imbi12i | |
32 | 31 | ralbii | |
33 | 26 32 | anbi12i | |
34 | 33 | rexbii | |
35 | 21 34 | sylibr | |
36 | gtso | |
|
37 | 36 | a1i | |
38 | 19 20 35 37 | supiso | |
39 | 12 38 | eqtrid | |
40 | df-inf | |
|
41 | 40 | eqcomi | |
42 | 41 | fveq2i | |
43 | negeq | |
|
44 | negex | |
|
45 | 43 7 44 | fvmpt | |
46 | 42 45 | eqtrid | |
47 | 1 46 | syl | |
48 | 39 47 | eqtr2d | |
49 | 48 | negeqd | |
50 | 3 49 | eqtr3d | |