Metamath Proof Explorer


Theorem infrenegsup

Description: The infimum of a set of reals A is the negative of the supremum of the negatives of its elements. The antecedent ensures that A is nonempty and has a lower bound. (Contributed by NM, 14-Jun-2005) (Revised by AV, 4-Sep-2020)

Ref Expression
Assertion infrenegsup AAxyAxysupA<=supz|zA<

Proof

Step Hyp Ref Expression
1 infrecl AAxyAxysupA<
2 1 recnd AAxyAxysupA<
3 2 negnegd AAxyAxysupA<=supA<
4 negeq w=zw=z
5 4 cbvmptv ww=zz
6 5 mptpreima ww-1A=z|zA
7 eqid ww=ww
8 7 negiso wwIsom<,<-1ww-1=ww
9 8 simpri ww-1=ww
10 9 imaeq1i ww-1A=wwA
11 6 10 eqtr3i z|zA=wwA
12 11 supeq1i supz|zA<=supwwA<
13 8 simpli wwIsom<,<-1
14 isocnv wwIsom<,<-1ww-1Isom<-1,<
15 13 14 ax-mp ww-1Isom<-1,<
16 isoeq1 ww-1=wwww-1Isom<-1,<wwIsom<-1,<
17 9 16 ax-mp ww-1Isom<-1,<wwIsom<-1,<
18 15 17 mpbi wwIsom<-1,<
19 18 a1i AAxyAxywwIsom<-1,<
20 simp1 AAxyAxyA
21 infm3 AAxyAxyxyA¬y<xyx<yzAz<y
22 vex xV
23 vex yV
24 22 23 brcnv x<-1yy<x
25 24 notbii ¬x<-1y¬y<x
26 25 ralbii yA¬x<-1yyA¬y<x
27 23 22 brcnv y<-1xx<y
28 vex zV
29 23 28 brcnv y<-1zz<y
30 29 rexbii zAy<-1zzAz<y
31 27 30 imbi12i y<-1xzAy<-1zx<yzAz<y
32 31 ralbii yy<-1xzAy<-1zyx<yzAz<y
33 26 32 anbi12i yA¬x<-1yyy<-1xzAy<-1zyA¬y<xyx<yzAz<y
34 33 rexbii xyA¬x<-1yyy<-1xzAy<-1zxyA¬y<xyx<yzAz<y
35 21 34 sylibr AAxyAxyxyA¬x<-1yyy<-1xzAy<-1z
36 gtso <-1Or
37 36 a1i AAxyAxy<-1Or
38 19 20 35 37 supiso AAxyAxysupwwA<=wwsupA<-1
39 12 38 eqtrid AAxyAxysupz|zA<=wwsupA<-1
40 df-inf supA<=supA<-1
41 40 eqcomi supA<-1=supA<
42 41 fveq2i wwsupA<-1=wwsupA<
43 negeq w=supA<w=supA<
44 negex supA<V
45 43 7 44 fvmpt supA<wwsupA<=supA<
46 42 45 eqtrid supA<wwsupA<-1=supA<
47 1 46 syl AAxyAxywwsupA<-1=supA<
48 39 47 eqtr2d AAxyAxysupA<=supz|zA<
49 48 negeqd AAxyAxysupA<=supz|zA<
50 3 49 eqtr3d AAxyAxysupA<=supz|zA<