Metamath Proof Explorer


Theorem supiso

Description: Image of a supremum under an isomorphism. (Contributed by Mario Carneiro, 24-Dec-2016)

Ref Expression
Hypotheses supiso.1 φFIsomR,SAB
supiso.2 φCA
supisoex.3 φxAyC¬xRyyAyRxzCyRz
supiso.4 φROrA
Assertion supiso φsupFCBS=FsupCAR

Proof

Step Hyp Ref Expression
1 supiso.1 φFIsomR,SAB
2 supiso.2 φCA
3 supisoex.3 φxAyC¬xRyyAyRxzCyRz
4 supiso.4 φROrA
5 isoso FIsomR,SABROrASOrB
6 1 5 syl φROrASOrB
7 4 6 mpbid φSOrB
8 isof1o FIsomR,SABF:A1-1 ontoB
9 f1of F:A1-1 ontoBF:AB
10 1 8 9 3syl φF:AB
11 4 3 supcl φsupCARA
12 10 11 ffvelcdmd φFsupCARB
13 4 3 supub φuC¬supCARRu
14 13 ralrimiv φuC¬supCARRu
15 4 3 suplub φuAuRsupCARzCuRz
16 15 expd φuAuRsupCARzCuRz
17 16 ralrimiv φuAuRsupCARzCuRz
18 1 2 supisolem φsupCARAuC¬supCARRuuAuRsupCARzCuRzwFC¬FsupCARSwwBwSFsupCARvFCwSv
19 11 18 mpdan φuC¬supCARRuuAuRsupCARzCuRzwFC¬FsupCARSwwBwSFsupCARvFCwSv
20 14 17 19 mpbi2and φwFC¬FsupCARSwwBwSFsupCARvFCwSv
21 20 simpld φwFC¬FsupCARSw
22 21 r19.21bi φwFC¬FsupCARSw
23 20 simprd φwBwSFsupCARvFCwSv
24 23 r19.21bi φwBwSFsupCARvFCwSv
25 24 impr φwBwSFsupCARvFCwSv
26 7 12 22 25 eqsupd φsupFCBS=FsupCAR