Metamath Proof Explorer


Theorem isoso

Description: An isomorphism preserves the property of being a strict total order. (Contributed by Stefan O'Rear, 16-Nov-2014)

Ref Expression
Assertion isoso HIsomR,SABROrASOrB

Proof

Step Hyp Ref Expression
1 isocnv HIsomR,SABH-1IsomS,RBA
2 isosolem H-1IsomS,RBAROrASOrB
3 1 2 syl HIsomR,SABROrASOrB
4 isosolem HIsomR,SABSOrBROrA
5 3 4 impbid HIsomR,SABROrASOrB