Metamath Proof Explorer


Theorem isowe

Description: An isomorphism preserves the property of being a well-ordering. Proposition 6.32(3) of TakeutiZaring p. 33. (Contributed by NM, 30-Apr-2004) (Revised by Mario Carneiro, 18-Nov-2014)

Ref Expression
Assertion isowe HIsomR,SABRWeASWeB

Proof

Step Hyp Ref Expression
1 isofr HIsomR,SABRFrASFrB
2 isoso HIsomR,SABROrASOrB
3 1 2 anbi12d HIsomR,SABRFrAROrASFrBSOrB
4 df-we RWeARFrAROrA
5 df-we SWeBSFrBSOrB
6 3 4 5 3bitr4g HIsomR,SABRWeASWeB