Description: An isomorphism preserves the property of being a well-ordering. Proposition 6.32(3) of TakeutiZaring p. 33. (Contributed by NM, 30-Apr-2004) (Revised by Mario Carneiro, 18-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isowe | |- ( H Isom R , S ( A , B ) -> ( R We A <-> S We B ) )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | isofr | |- ( H Isom R , S ( A , B ) -> ( R Fr A <-> S Fr B ) )  | 
						|
| 2 | isoso | |- ( H Isom R , S ( A , B ) -> ( R Or A <-> S Or B ) )  | 
						|
| 3 | 1 2 | anbi12d | |- ( H Isom R , S ( A , B ) -> ( ( R Fr A /\ R Or A ) <-> ( S Fr B /\ S Or B ) ) )  | 
						
| 4 | df-we | |- ( R We A <-> ( R Fr A /\ R Or A ) )  | 
						|
| 5 | df-we | |- ( S We B <-> ( S Fr B /\ S Or B ) )  | 
						|
| 6 | 3 4 5 | 3bitr4g | |- ( H Isom R , S ( A , B ) -> ( R We A <-> S We B ) )  |