Metamath Proof Explorer


Theorem infeq1

Description: Equality theorem for infimum. (Contributed by AV, 2-Sep-2020)

Ref Expression
Assertion infeq1 B=CsupBAR=supCAR

Proof

Step Hyp Ref Expression
1 supeq1 B=CsupBAR-1=supCAR-1
2 df-inf supBAR=supBAR-1
3 df-inf supCAR=supCAR-1
4 1 2 3 3eqtr4g B=CsupBAR=supCAR