Description: Equality theorem for infimum. (Contributed by AV, 2-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | infeq1 | ⊢ ( 𝐵 = 𝐶 → inf ( 𝐵 , 𝐴 , 𝑅 ) = inf ( 𝐶 , 𝐴 , 𝑅 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supeq1 | ⊢ ( 𝐵 = 𝐶 → sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) = sup ( 𝐶 , 𝐴 , ◡ 𝑅 ) ) | |
2 | df-inf | ⊢ inf ( 𝐵 , 𝐴 , 𝑅 ) = sup ( 𝐵 , 𝐴 , ◡ 𝑅 ) | |
3 | df-inf | ⊢ inf ( 𝐶 , 𝐴 , 𝑅 ) = sup ( 𝐶 , 𝐴 , ◡ 𝑅 ) | |
4 | 1 2 3 | 3eqtr4g | ⊢ ( 𝐵 = 𝐶 → inf ( 𝐵 , 𝐴 , 𝑅 ) = inf ( 𝐶 , 𝐴 , 𝑅 ) ) |