Metamath Proof Explorer


Theorem infeq1d

Description: Equality deduction for infimum. (Contributed by AV, 2-Sep-2020)

Ref Expression
Hypothesis infeq1d.1 φB=C
Assertion infeq1d φsupBAR=supCAR

Proof

Step Hyp Ref Expression
1 infeq1d.1 φB=C
2 infeq1 B=CsupBAR=supCAR
3 1 2 syl φsupBAR=supCAR