Description: Any lower bound of a nonempty set of real numbers is less than or equal to its infimum. (Contributed by Jeff Hankins, 1-Sep-2013) (Revised by AV, 4-Sep-2020) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | infregelb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltso | |
|
2 | 1 | a1i | |
3 | infm3 | |
|
4 | simp1 | |
|
5 | 2 3 4 | infglbb | |
6 | 5 | notbid | |
7 | infrecl | |
|
8 | 7 | anim1i | |
9 | 8 | ancomd | |
10 | lenlt | |
|
11 | 9 10 | syl | |
12 | simplr | |
|
13 | ssel | |
|
14 | 13 | adantr | |
15 | 14 | imp | |
16 | 12 15 | lenltd | |
17 | 16 | ralbidva | |
18 | 17 | 3ad2antl1 | |
19 | ralnex | |
|
20 | 18 19 | bitrdi | |
21 | 6 11 20 | 3bitr4d | |
22 | breq2 | |
|
23 | 22 | cbvralvw | |
24 | 21 23 | bitrdi | |