Metamath Proof Explorer


Theorem infregelb

Description: Any lower bound of a nonempty set of real numbers is less than or equal to its infimum. (Contributed by Jeff Hankins, 1-Sep-2013) (Revised by AV, 4-Sep-2020) (Proof modification is discouraged.)

Ref Expression
Assertion infregelb AAxyAxyBBsupA<zABz

Proof

Step Hyp Ref Expression
1 ltso <Or
2 1 a1i AAxyAxy<Or
3 infm3 AAxyAxyxyA¬y<xyx<ywAw<y
4 simp1 AAxyAxyA
5 2 3 4 infglbb AAxyAxyBsupA<<BwAw<B
6 5 notbid AAxyAxyB¬supA<<B¬wAw<B
7 infrecl AAxyAxysupA<
8 7 anim1i AAxyAxyBsupA<B
9 8 ancomd AAxyAxyBBsupA<
10 lenlt BsupA<BsupA<¬supA<<B
11 9 10 syl AAxyAxyBBsupA<¬supA<<B
12 simplr ABwAB
13 ssel AwAw
14 13 adantr ABwAw
15 14 imp ABwAw
16 12 15 lenltd ABwABw¬w<B
17 16 ralbidva ABwABwwA¬w<B
18 17 3ad2antl1 AAxyAxyBwABwwA¬w<B
19 ralnex wA¬w<B¬wAw<B
20 18 19 bitrdi AAxyAxyBwABw¬wAw<B
21 6 11 20 3bitr4d AAxyAxyBBsupA<wABw
22 breq2 w=zBwBz
23 22 cbvralvw wABwzABz
24 21 23 bitrdi AAxyAxyBBsupA<zABz