Metamath Proof Explorer


Theorem infglbb

Description: Bidirectional form of infglb . (Contributed by AV, 3-Sep-2020)

Ref Expression
Hypotheses infcl.1 φROrA
infcl.2 φxAyB¬yRxyAxRyzBzRy
infglbb.3 φBA
Assertion infglbb φCAsupBARRCzBzRC

Proof

Step Hyp Ref Expression
1 infcl.1 φROrA
2 infcl.2 φxAyB¬yRxyAxRyzBzRy
3 infglbb.3 φBA
4 df-inf supBAR=supBAR-1
5 4 breq1i supBARRCsupBAR-1RC
6 simpr φCACA
7 cnvso ROrAR-1OrA
8 1 7 sylib φR-1OrA
9 1 2 infcllem φxAyB¬xR-1yyAyR-1xzByR-1z
10 8 9 supcl φsupBAR-1A
11 10 adantr φCAsupBAR-1A
12 brcnvg CAsupBAR-1ACR-1supBAR-1supBAR-1RC
13 12 bicomd CAsupBAR-1AsupBAR-1RCCR-1supBAR-1
14 6 11 13 syl2anc φCAsupBAR-1RCCR-1supBAR-1
15 8 9 3 suplub2 φCACR-1supBAR-1zBCR-1z
16 vex zV
17 brcnvg CAzVCR-1zzRC
18 6 16 17 sylancl φCACR-1zzRC
19 18 rexbidv φCAzBCR-1zzBzRC
20 14 15 19 3bitrd φCAsupBAR-1RCzBzRC
21 5 20 bitrid φCAsupBARRCzBzRC