Metamath Proof Explorer


Theorem infglbb

Description: Bidirectional form of infglb . (Contributed by AV, 3-Sep-2020)

Ref Expression
Hypotheses infcl.1 φ R Or A
infcl.2 φ x A y B ¬ y R x y A x R y z B z R y
infglbb.3 φ B A
Assertion infglbb φ C A sup B A R R C z B z R C

Proof

Step Hyp Ref Expression
1 infcl.1 φ R Or A
2 infcl.2 φ x A y B ¬ y R x y A x R y z B z R y
3 infglbb.3 φ B A
4 df-inf sup B A R = sup B A R -1
5 4 breq1i sup B A R R C sup B A R -1 R C
6 simpr φ C A C A
7 cnvso R Or A R -1 Or A
8 1 7 sylib φ R -1 Or A
9 1 2 infcllem φ x A y B ¬ x R -1 y y A y R -1 x z B y R -1 z
10 8 9 supcl φ sup B A R -1 A
11 10 adantr φ C A sup B A R -1 A
12 brcnvg C A sup B A R -1 A C R -1 sup B A R -1 sup B A R -1 R C
13 12 bicomd C A sup B A R -1 A sup B A R -1 R C C R -1 sup B A R -1
14 6 11 13 syl2anc φ C A sup B A R -1 R C C R -1 sup B A R -1
15 8 9 3 suplub2 φ C A C R -1 sup B A R -1 z B C R -1 z
16 vex z V
17 brcnvg C A z V C R -1 z z R C
18 6 16 17 sylancl φ C A C R -1 z z R C
19 18 rexbidv φ C A z B C R -1 z z B z R C
20 14 15 19 3bitrd φ C A sup B A R -1 R C z B z R C
21 5 20 bitrid φ C A sup B A R R C z B z R C