Metamath Proof Explorer


Theorem cnvso

Description: The converse of a strict order relation is a strict order relation. (Contributed by NM, 15-Jun-2005)

Ref Expression
Assertion cnvso ROrAR-1OrA

Proof

Step Hyp Ref Expression
1 cnvpo RPoAR-1PoA
2 ralcom xAyAxRyx=yyRxyAxAxRyx=yyRx
3 vex yV
4 vex xV
5 3 4 brcnv yR-1xxRy
6 equcom y=xx=y
7 4 3 brcnv xR-1yyRx
8 5 6 7 3orbi123i yR-1xy=xxR-1yxRyx=yyRx
9 8 2ralbii yAxAyR-1xy=xxR-1yyAxAxRyx=yyRx
10 2 9 bitr4i xAyAxRyx=yyRxyAxAyR-1xy=xxR-1y
11 1 10 anbi12i RPoAxAyAxRyx=yyRxR-1PoAyAxAyR-1xy=xxR-1y
12 df-so ROrARPoAxAyAxRyx=yyRx
13 df-so R-1OrAR-1PoAyAxAyR-1xy=xxR-1y
14 11 12 13 3bitr4i ROrAR-1OrA