Metamath Proof Explorer


Theorem 2ralbii

Description: Inference adding two restricted universal quantifiers to both sides of an equivalence. (Contributed by NM, 1-Aug-2004)

Ref Expression
Hypothesis 2ralbii.1 φψ
Assertion 2ralbii xAyBφxAyBψ

Proof

Step Hyp Ref Expression
1 2ralbii.1 φψ
2 1 ralbii yBφyBψ
3 2 ralbii xAyBφxAyBψ