Metamath Proof Explorer


Theorem 2rexbii

Description: Inference adding two restricted existential quantifiers to both sides of an equivalence. (Contributed by NM, 11-Nov-1995)

Ref Expression
Hypothesis 2rexbii.1 φψ
Assertion 2rexbii xAyBφxAyBψ

Proof

Step Hyp Ref Expression
1 2rexbii.1 φψ
2 1 rexbii yBφyBψ
3 2 rexbii xAyBφxAyBψ