Metamath Proof Explorer


Theorem 3ralbii

Description: Inference adding three restricted universal quantifiers to both sides of an equivalence. (Contributed by Peter Mazsa, 25-Jul-2019)

Ref Expression
Hypothesis 3ralbii.1 φ ψ
Assertion 3ralbii x A y B z C φ x A y B z C ψ

Proof

Step Hyp Ref Expression
1 3ralbii.1 φ ψ
2 1 2ralbii y B z C φ y B z C ψ
3 2 ralbii x A y B z C φ x A y B z C ψ