Metamath Proof Explorer


Theorem 3ralbii

Description: Inference adding three restricted universal quantifiers to both sides of an equivalence. (Contributed by Peter Mazsa, 25-Jul-2019)

Ref Expression
Hypothesis 3ralbii.1 ( 𝜑𝜓 )
Assertion 3ralbii ( ∀ 𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∀ 𝑥𝐴𝑦𝐵𝑧𝐶 𝜓 )

Proof

Step Hyp Ref Expression
1 3ralbii.1 ( 𝜑𝜓 )
2 1 2ralbii ( ∀ 𝑦𝐵𝑧𝐶 𝜑 ↔ ∀ 𝑦𝐵𝑧𝐶 𝜓 )
3 2 ralbii ( ∀ 𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∀ 𝑥𝐴𝑦𝐵𝑧𝐶 𝜓 )