Metamath Proof Explorer


Theorem cnvso

Description: The converse of a strict order relation is a strict order relation. (Contributed by NM, 15-Jun-2005)

Ref Expression
Assertion cnvso ( 𝑅 Or 𝐴 𝑅 Or 𝐴 )

Proof

Step Hyp Ref Expression
1 cnvpo ( 𝑅 Po 𝐴 𝑅 Po 𝐴 )
2 ralcom ( ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑅 𝑦𝑥 = 𝑦𝑦 𝑅 𝑥 ) ↔ ∀ 𝑦𝐴𝑥𝐴 ( 𝑥 𝑅 𝑦𝑥 = 𝑦𝑦 𝑅 𝑥 ) )
3 vex 𝑦 ∈ V
4 vex 𝑥 ∈ V
5 3 4 brcnv ( 𝑦 𝑅 𝑥𝑥 𝑅 𝑦 )
6 equcom ( 𝑦 = 𝑥𝑥 = 𝑦 )
7 4 3 brcnv ( 𝑥 𝑅 𝑦𝑦 𝑅 𝑥 )
8 5 6 7 3orbi123i ( ( 𝑦 𝑅 𝑥𝑦 = 𝑥𝑥 𝑅 𝑦 ) ↔ ( 𝑥 𝑅 𝑦𝑥 = 𝑦𝑦 𝑅 𝑥 ) )
9 8 2ralbii ( ∀ 𝑦𝐴𝑥𝐴 ( 𝑦 𝑅 𝑥𝑦 = 𝑥𝑥 𝑅 𝑦 ) ↔ ∀ 𝑦𝐴𝑥𝐴 ( 𝑥 𝑅 𝑦𝑥 = 𝑦𝑦 𝑅 𝑥 ) )
10 2 9 bitr4i ( ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑅 𝑦𝑥 = 𝑦𝑦 𝑅 𝑥 ) ↔ ∀ 𝑦𝐴𝑥𝐴 ( 𝑦 𝑅 𝑥𝑦 = 𝑥𝑥 𝑅 𝑦 ) )
11 1 10 anbi12i ( ( 𝑅 Po 𝐴 ∧ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑅 𝑦𝑥 = 𝑦𝑦 𝑅 𝑥 ) ) ↔ ( 𝑅 Po 𝐴 ∧ ∀ 𝑦𝐴𝑥𝐴 ( 𝑦 𝑅 𝑥𝑦 = 𝑥𝑥 𝑅 𝑦 ) ) )
12 df-so ( 𝑅 Or 𝐴 ↔ ( 𝑅 Po 𝐴 ∧ ∀ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑅 𝑦𝑥 = 𝑦𝑦 𝑅 𝑥 ) ) )
13 df-so ( 𝑅 Or 𝐴 ↔ ( 𝑅 Po 𝐴 ∧ ∀ 𝑦𝐴𝑥𝐴 ( 𝑦 𝑅 𝑥𝑦 = 𝑥𝑥 𝑅 𝑦 ) ) )
14 11 12 13 3bitr4i ( 𝑅 Or 𝐴 𝑅 Or 𝐴 )