Step |
Hyp |
Ref |
Expression |
1 |
|
cnvpo |
⊢ ( 𝑅 Po 𝐴 ↔ ◡ 𝑅 Po 𝐴 ) |
2 |
|
ralcom |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ↔ ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) |
3 |
|
vex |
⊢ 𝑦 ∈ V |
4 |
|
vex |
⊢ 𝑥 ∈ V |
5 |
3 4
|
brcnv |
⊢ ( 𝑦 ◡ 𝑅 𝑥 ↔ 𝑥 𝑅 𝑦 ) |
6 |
|
equcom |
⊢ ( 𝑦 = 𝑥 ↔ 𝑥 = 𝑦 ) |
7 |
4 3
|
brcnv |
⊢ ( 𝑥 ◡ 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) |
8 |
5 6 7
|
3orbi123i |
⊢ ( ( 𝑦 ◡ 𝑅 𝑥 ∨ 𝑦 = 𝑥 ∨ 𝑥 ◡ 𝑅 𝑦 ) ↔ ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) |
9 |
8
|
2ralbii |
⊢ ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝑦 ◡ 𝑅 𝑥 ∨ 𝑦 = 𝑥 ∨ 𝑥 ◡ 𝑅 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) |
10 |
2 9
|
bitr4i |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ↔ ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝑦 ◡ 𝑅 𝑥 ∨ 𝑦 = 𝑥 ∨ 𝑥 ◡ 𝑅 𝑦 ) ) |
11 |
1 10
|
anbi12i |
⊢ ( ( 𝑅 Po 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ↔ ( ◡ 𝑅 Po 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝑦 ◡ 𝑅 𝑥 ∨ 𝑦 = 𝑥 ∨ 𝑥 ◡ 𝑅 𝑦 ) ) ) |
12 |
|
df-so |
⊢ ( 𝑅 Or 𝐴 ↔ ( 𝑅 Po 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) |
13 |
|
df-so |
⊢ ( ◡ 𝑅 Or 𝐴 ↔ ( ◡ 𝑅 Po 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑥 ∈ 𝐴 ( 𝑦 ◡ 𝑅 𝑥 ∨ 𝑦 = 𝑥 ∨ 𝑥 ◡ 𝑅 𝑦 ) ) ) |
14 |
11 12 13
|
3bitr4i |
⊢ ( 𝑅 Or 𝐴 ↔ ◡ 𝑅 Or 𝐴 ) |