Metamath Proof Explorer


Theorem infglb

Description: An infimum is the greatest lower bound. See also infcl and inflb . (Contributed by AV, 3-Sep-2020)

Ref Expression
Hypotheses infcl.1 φROrA
infcl.2 φxAyB¬yRxyAxRyzBzRy
Assertion infglb φCAsupBARRCzBzRC

Proof

Step Hyp Ref Expression
1 infcl.1 φROrA
2 infcl.2 φxAyB¬yRxyAxRyzBzRy
3 df-inf supBAR=supBAR-1
4 3 breq1i supBARRCsupBAR-1RC
5 simpr φCACA
6 cnvso ROrAR-1OrA
7 1 6 sylib φR-1OrA
8 1 2 infcllem φxAyB¬xR-1yyAyR-1xzByR-1z
9 7 8 supcl φsupBAR-1A
10 9 adantr φCAsupBAR-1A
11 brcnvg CAsupBAR-1ACR-1supBAR-1supBAR-1RC
12 11 bicomd CAsupBAR-1AsupBAR-1RCCR-1supBAR-1
13 5 10 12 syl2anc φCAsupBAR-1RCCR-1supBAR-1
14 4 13 bitrid φCAsupBARRCCR-1supBAR-1
15 7 8 suplub φCACR-1supBAR-1zBCR-1z
16 15 expdimp φCACR-1supBAR-1zBCR-1z
17 vex zV
18 brcnvg CAzVCR-1zzRC
19 5 17 18 sylancl φCACR-1zzRC
20 19 rexbidv φCAzBCR-1zzBzRC
21 16 20 sylibd φCACR-1supBAR-1zBzRC
22 14 21 sylbid φCAsupBARRCzBzRC
23 22 expimpd φCAsupBARRCzBzRC