Metamath Proof Explorer


Theorem infcl

Description: An infimum belongs to its base class (closure law). See also inflb and infglb . (Contributed by AV, 3-Sep-2020)

Ref Expression
Hypotheses infcl.1 φROrA
infcl.2 φxAyB¬yRxyAxRyzBzRy
Assertion infcl φsupBARA

Proof

Step Hyp Ref Expression
1 infcl.1 φROrA
2 infcl.2 φxAyB¬yRxyAxRyzBzRy
3 df-inf supBAR=supBAR-1
4 cnvso ROrAR-1OrA
5 1 4 sylib φR-1OrA
6 1 2 infcllem φxAyB¬xR-1yyAyR-1xzByR-1z
7 5 6 supcl φsupBAR-1A
8 3 7 eqeltrid φsupBARA