Description: If a nonempty set of real numbers has a lower bound, its infimum is less than or equal to any of its elements. (Contributed by Jeff Hankins, 15-Sep-2013) (Revised by AV, 4-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | infrelb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 | |
|
2 | ne0i | |
|
3 | 2 | 3ad2ant3 | |
4 | simp2 | |
|
5 | infrecl | |
|
6 | 1 3 4 5 | syl3anc | |
7 | ssel2 | |
|
8 | 7 | 3adant2 | |
9 | ltso | |
|
10 | 9 | a1i | |
11 | simpll | |
|
12 | 2 | adantl | |
13 | simplr | |
|
14 | infm3 | |
|
15 | 11 12 13 14 | syl3anc | |
16 | 10 15 | inflb | |
17 | 16 | expcom | |
18 | 17 | pm2.43b | |
19 | 18 | 3impia | |
20 | 6 8 19 | nltled | |