Metamath Proof Explorer


Theorem infrelb

Description: If a nonempty set of real numbers has a lower bound, its infimum is less than or equal to any of its elements. (Contributed by Jeff Hankins, 15-Sep-2013) (Revised by AV, 4-Sep-2020)

Ref Expression
Assertion infrelb BxyBxyABsupB<A

Proof

Step Hyp Ref Expression
1 simp1 BxyBxyABB
2 ne0i ABB
3 2 3ad2ant3 BxyBxyABB
4 simp2 BxyBxyABxyBxy
5 infrecl BBxyBxysupB<
6 1 3 4 5 syl3anc BxyBxyABsupB<
7 ssel2 BABA
8 7 3adant2 BxyBxyABA
9 ltso <Or
10 9 a1i BxyBxyAB<Or
11 simpll BxyBxyABB
12 2 adantl BxyBxyABB
13 simplr BxyBxyABxyBxy
14 infm3 BBxyBxyxyB¬y<xyx<yzBz<y
15 11 12 13 14 syl3anc BxyBxyABxyB¬y<xyx<yzBz<y
16 10 15 inflb BxyBxyABAB¬A<supB<
17 16 expcom ABBxyBxyAB¬A<supB<
18 17 pm2.43b BxyBxyAB¬A<supB<
19 18 3impia BxyBxyAB¬A<supB<
20 6 8 19 nltled BxyBxyABsupB<A