Metamath Proof Explorer


Theorem infrefilb

Description: The infimum of a finite set of reals is less than or equal to any of its elements. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Assertion infrefilb BBFinABsupB<A

Proof

Step Hyp Ref Expression
1 simp1 BBFinABB
2 fiminre2 BBFinxyBxy
3 2 3adant3 BBFinABxyBxy
4 simp3 BBFinABAB
5 infrelb BxyBxyABsupB<A
6 1 3 4 5 syl3anc BBFinABsupB<A