Metamath Proof Explorer


Theorem infrefilb

Description: The infimum of a finite set of reals is less than or equal to any of its elements. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Assertion infrefilb B B Fin A B sup B < A

Proof

Step Hyp Ref Expression
1 simp1 B B Fin A B B
2 fiminre2 B B Fin x y B x y
3 2 3adant3 B B Fin A B x y B x y
4 simp3 B B Fin A B A B
5 infrelb B x y B x y A B sup B < A
6 1 3 4 5 syl3anc B B Fin A B sup B < A