Metamath Proof Explorer


Theorem fiminre2

Description: A nonempty finite set of real numbers is bounded below. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Assertion fiminre2 AAFinxyAxy

Proof

Step Hyp Ref Expression
1 0red A=0
2 rzal A=yA0y
3 breq1 x=0xy0y
4 3 ralbidv x=0yAxyyA0y
5 4 rspcev 0yA0yxyAxy
6 1 2 5 syl2anc A=xyAxy
7 6 adantl AAFinA=xyAxy
8 neqne ¬A=A
9 8 adantl AAFin¬A=A
10 simpll AAFinAA
11 simplr AAFinAAFin
12 simpr AAFinAA
13 fiminre AAFinAxAyAxy
14 10 11 12 13 syl3anc AAFinAxAyAxy
15 ssrexv AxAyAxyxyAxy
16 10 14 15 sylc AAFinAxyAxy
17 9 16 syldan AAFin¬A=xyAxy
18 7 17 pm2.61dan AAFinxyAxy