Step |
Hyp |
Ref |
Expression |
1 |
|
0red |
⊢ ( 𝐴 = ∅ → 0 ∈ ℝ ) |
2 |
|
rzal |
⊢ ( 𝐴 = ∅ → ∀ 𝑦 ∈ 𝐴 0 ≤ 𝑦 ) |
3 |
|
breq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 ≤ 𝑦 ↔ 0 ≤ 𝑦 ) ) |
4 |
3
|
ralbidv |
⊢ ( 𝑥 = 0 → ( ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ↔ ∀ 𝑦 ∈ 𝐴 0 ≤ 𝑦 ) ) |
5 |
4
|
rspcev |
⊢ ( ( 0 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 0 ≤ 𝑦 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) |
6 |
1 2 5
|
syl2anc |
⊢ ( 𝐴 = ∅ → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) |
7 |
6
|
adantl |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ) ∧ 𝐴 = ∅ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) |
8 |
|
neqne |
⊢ ( ¬ 𝐴 = ∅ → 𝐴 ≠ ∅ ) |
9 |
8
|
adantl |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ) ∧ ¬ 𝐴 = ∅ ) → 𝐴 ≠ ∅ ) |
10 |
|
simpll |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ) ∧ 𝐴 ≠ ∅ ) → 𝐴 ⊆ ℝ ) |
11 |
|
simplr |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ) ∧ 𝐴 ≠ ∅ ) → 𝐴 ∈ Fin ) |
12 |
|
simpr |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ) ∧ 𝐴 ≠ ∅ ) → 𝐴 ≠ ∅ ) |
13 |
|
fiminre |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) |
14 |
10 11 12 13
|
syl3anc |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ) ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) |
15 |
|
ssrexv |
⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) |
16 |
10 14 15
|
sylc |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ) ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) |
17 |
9 16
|
syldan |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ) ∧ ¬ 𝐴 = ∅ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) |
18 |
7 17
|
pm2.61dan |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) |