Metamath Proof Explorer


Theorem fiminre

Description: A nonempty finite set of real numbers has a minimum. Analogous to fimaxre . (Contributed by AV, 9-Aug-2020) (Proof shortened by Steven Nguyen, 3-Jun-2023)

Ref Expression
Assertion fiminre ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥𝐴𝑦𝐴 𝑥𝑦 )

Proof

Step Hyp Ref Expression
1 ltso < Or ℝ
2 soss ( 𝐴 ⊆ ℝ → ( < Or ℝ → < Or 𝐴 ) )
3 1 2 mpi ( 𝐴 ⊆ ℝ → < Or 𝐴 )
4 fiming ( ( < Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦𝑥 < 𝑦 ) )
5 3 4 syl3an1 ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦𝑥 < 𝑦 ) )
6 ssel2 ( ( 𝐴 ⊆ ℝ ∧ 𝑥𝐴 ) → 𝑥 ∈ ℝ )
7 6 adantr ( ( ( 𝐴 ⊆ ℝ ∧ 𝑥𝐴 ) ∧ 𝑦𝐴 ) → 𝑥 ∈ ℝ )
8 ssel2 ( ( 𝐴 ⊆ ℝ ∧ 𝑦𝐴 ) → 𝑦 ∈ ℝ )
9 8 adantlr ( ( ( 𝐴 ⊆ ℝ ∧ 𝑥𝐴 ) ∧ 𝑦𝐴 ) → 𝑦 ∈ ℝ )
10 7 9 leloed ( ( ( 𝐴 ⊆ ℝ ∧ 𝑥𝐴 ) ∧ 𝑦𝐴 ) → ( 𝑥𝑦 ↔ ( 𝑥 < 𝑦𝑥 = 𝑦 ) ) )
11 orcom ( ( 𝑥 = 𝑦𝑥 < 𝑦 ) ↔ ( 𝑥 < 𝑦𝑥 = 𝑦 ) )
12 11 a1i ( ( ( 𝐴 ⊆ ℝ ∧ 𝑥𝐴 ) ∧ 𝑦𝐴 ) → ( ( 𝑥 = 𝑦𝑥 < 𝑦 ) ↔ ( 𝑥 < 𝑦𝑥 = 𝑦 ) ) )
13 neor ( ( 𝑥 = 𝑦𝑥 < 𝑦 ) ↔ ( 𝑥𝑦𝑥 < 𝑦 ) )
14 13 a1i ( ( ( 𝐴 ⊆ ℝ ∧ 𝑥𝐴 ) ∧ 𝑦𝐴 ) → ( ( 𝑥 = 𝑦𝑥 < 𝑦 ) ↔ ( 𝑥𝑦𝑥 < 𝑦 ) ) )
15 10 12 14 3bitr2d ( ( ( 𝐴 ⊆ ℝ ∧ 𝑥𝐴 ) ∧ 𝑦𝐴 ) → ( 𝑥𝑦 ↔ ( 𝑥𝑦𝑥 < 𝑦 ) ) )
16 15 biimprd ( ( ( 𝐴 ⊆ ℝ ∧ 𝑥𝐴 ) ∧ 𝑦𝐴 ) → ( ( 𝑥𝑦𝑥 < 𝑦 ) → 𝑥𝑦 ) )
17 16 ralimdva ( ( 𝐴 ⊆ ℝ ∧ 𝑥𝐴 ) → ( ∀ 𝑦𝐴 ( 𝑥𝑦𝑥 < 𝑦 ) → ∀ 𝑦𝐴 𝑥𝑦 ) )
18 17 reximdva ( 𝐴 ⊆ ℝ → ( ∃ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦𝑥 < 𝑦 ) → ∃ 𝑥𝐴𝑦𝐴 𝑥𝑦 ) )
19 18 3ad2ant1 ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ( ∃ 𝑥𝐴𝑦𝐴 ( 𝑥𝑦𝑥 < 𝑦 ) → ∃ 𝑥𝐴𝑦𝐴 𝑥𝑦 ) )
20 5 19 mpd ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥𝐴𝑦𝐴 𝑥𝑦 )