Metamath Proof Explorer


Theorem fiminre

Description: A nonempty finite set of real numbers has a minimum. Analogous to fimaxre . (Contributed by AV, 9-Aug-2020) (Proof shortened by Steven Nguyen, 3-Jun-2023)

Ref Expression
Assertion fiminre AAFinAxAyAxy

Proof

Step Hyp Ref Expression
1 ltso <Or
2 soss A<Or<OrA
3 1 2 mpi A<OrA
4 fiming <OrAAFinAxAyAxyx<y
5 3 4 syl3an1 AAFinAxAyAxyx<y
6 ssel2 AxAx
7 6 adantr AxAyAx
8 ssel2 AyAy
9 8 adantlr AxAyAy
10 7 9 leloed AxAyAxyx<yx=y
11 orcom x=yx<yx<yx=y
12 11 a1i AxAyAx=yx<yx<yx=y
13 neor x=yx<yxyx<y
14 13 a1i AxAyAx=yx<yxyx<y
15 10 12 14 3bitr2d AxAyAxyxyx<y
16 15 biimprd AxAyAxyx<yxy
17 16 ralimdva AxAyAxyx<yyAxy
18 17 reximdva AxAyAxyx<yxAyAxy
19 18 3ad2ant1 AAFinAxAyAxyx<yxAyAxy
20 5 19 mpd AAFinAxAyAxy