| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ltso |
⊢ < Or ℝ |
| 2 |
|
soss |
⊢ ( 𝐴 ⊆ ℝ → ( < Or ℝ → < Or 𝐴 ) ) |
| 3 |
1 2
|
mpi |
⊢ ( 𝐴 ⊆ ℝ → < Or 𝐴 ) |
| 4 |
|
fimaxg |
⊢ ( ( < Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → 𝑦 < 𝑥 ) ) |
| 5 |
3 4
|
syl3an1 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → 𝑦 < 𝑥 ) ) |
| 6 |
|
ssel2 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ℝ ) |
| 7 |
6
|
adantrl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → 𝑦 ∈ ℝ ) |
| 8 |
|
ssel2 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℝ ) |
| 9 |
8
|
adantrr |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → 𝑥 ∈ ℝ ) |
| 10 |
7 9
|
leloed |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑦 ≤ 𝑥 ↔ ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) ) ) |
| 11 |
|
orcom |
⊢ ( ( 𝑥 = 𝑦 ∨ 𝑦 < 𝑥 ) ↔ ( 𝑦 < 𝑥 ∨ 𝑥 = 𝑦 ) ) |
| 12 |
|
equcom |
⊢ ( 𝑥 = 𝑦 ↔ 𝑦 = 𝑥 ) |
| 13 |
12
|
orbi2i |
⊢ ( ( 𝑦 < 𝑥 ∨ 𝑥 = 𝑦 ) ↔ ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) ) |
| 14 |
11 13
|
bitri |
⊢ ( ( 𝑥 = 𝑦 ∨ 𝑦 < 𝑥 ) ↔ ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) ) |
| 15 |
14
|
a1i |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝑥 = 𝑦 ∨ 𝑦 < 𝑥 ) ↔ ( 𝑦 < 𝑥 ∨ 𝑦 = 𝑥 ) ) ) |
| 16 |
|
neor |
⊢ ( ( 𝑥 = 𝑦 ∨ 𝑦 < 𝑥 ) ↔ ( 𝑥 ≠ 𝑦 → 𝑦 < 𝑥 ) ) |
| 17 |
16
|
a1i |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝑥 = 𝑦 ∨ 𝑦 < 𝑥 ) ↔ ( 𝑥 ≠ 𝑦 → 𝑦 < 𝑥 ) ) ) |
| 18 |
10 15 17
|
3bitr2d |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑦 ≤ 𝑥 ↔ ( 𝑥 ≠ 𝑦 → 𝑦 < 𝑥 ) ) ) |
| 19 |
18
|
biimprd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝑥 ≠ 𝑦 → 𝑦 < 𝑥 ) → 𝑦 ≤ 𝑥 ) ) |
| 20 |
19
|
anassrs |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑥 ≠ 𝑦 → 𝑦 < 𝑥 ) → 𝑦 ≤ 𝑥 ) ) |
| 21 |
20
|
ralimdva |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → 𝑦 < 𝑥 ) → ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) |
| 22 |
21
|
reximdva |
⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → 𝑦 < 𝑥 ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) |
| 23 |
22
|
3ad2ant1 |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → 𝑦 < 𝑥 ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) |
| 24 |
5 23
|
mpd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) |