| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0re |
⊢ 0 ∈ ℝ |
| 2 |
|
rzal |
⊢ ( 𝐴 = ∅ → ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 0 ) |
| 3 |
|
brralrspcev |
⊢ ( ( 0 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 0 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) |
| 4 |
1 2 3
|
sylancr |
⊢ ( 𝐴 = ∅ → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) |
| 5 |
4
|
a1i |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ) → ( 𝐴 = ∅ → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) |
| 6 |
|
fimaxre |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) |
| 7 |
6
|
3expia |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ) → ( 𝐴 ≠ ∅ → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) |
| 8 |
|
ssrexv |
⊢ ( 𝐴 ⊆ ℝ → ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ) → ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) |
| 10 |
7 9
|
syld |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ) → ( 𝐴 ≠ ∅ → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) |
| 11 |
5 10
|
pm2.61dne |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) |