| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							r19.29 | 
							⊢ ( ( ∀ 𝑦  ∈  𝐴 𝐵  ∈  ℝ  ∧  ∃ 𝑦  ∈  𝐴 𝑧  =  𝐵 )  →  ∃ 𝑦  ∈  𝐴 ( 𝐵  ∈  ℝ  ∧  𝑧  =  𝐵 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							eleq1 | 
							⊢ ( 𝑧  =  𝐵  →  ( 𝑧  ∈  ℝ  ↔  𝐵  ∈  ℝ ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							biimparc | 
							⊢ ( ( 𝐵  ∈  ℝ  ∧  𝑧  =  𝐵 )  →  𝑧  ∈  ℝ )  | 
						
						
							| 4 | 
							
								3
							 | 
							rexlimivw | 
							⊢ ( ∃ 𝑦  ∈  𝐴 ( 𝐵  ∈  ℝ  ∧  𝑧  =  𝐵 )  →  𝑧  ∈  ℝ )  | 
						
						
							| 5 | 
							
								1 4
							 | 
							syl | 
							⊢ ( ( ∀ 𝑦  ∈  𝐴 𝐵  ∈  ℝ  ∧  ∃ 𝑦  ∈  𝐴 𝑧  =  𝐵 )  →  𝑧  ∈  ℝ )  | 
						
						
							| 6 | 
							
								5
							 | 
							ex | 
							⊢ ( ∀ 𝑦  ∈  𝐴 𝐵  ∈  ℝ  →  ( ∃ 𝑦  ∈  𝐴 𝑧  =  𝐵  →  𝑧  ∈  ℝ ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							abssdv | 
							⊢ ( ∀ 𝑦  ∈  𝐴 𝐵  ∈  ℝ  →  { 𝑧  ∣  ∃ 𝑦  ∈  𝐴 𝑧  =  𝐵 }  ⊆  ℝ )  | 
						
						
							| 8 | 
							
								
							 | 
							abrexfi | 
							⊢ ( 𝐴  ∈  Fin  →  { 𝑧  ∣  ∃ 𝑦  ∈  𝐴 𝑧  =  𝐵 }  ∈  Fin )  | 
						
						
							| 9 | 
							
								
							 | 
							fimaxre2 | 
							⊢ ( ( { 𝑧  ∣  ∃ 𝑦  ∈  𝐴 𝑧  =  𝐵 }  ⊆  ℝ  ∧  { 𝑧  ∣  ∃ 𝑦  ∈  𝐴 𝑧  =  𝐵 }  ∈  Fin )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑤  ∈  { 𝑧  ∣  ∃ 𝑦  ∈  𝐴 𝑧  =  𝐵 } 𝑤  ≤  𝑥 )  | 
						
						
							| 10 | 
							
								7 8 9
							 | 
							syl2anr | 
							⊢ ( ( 𝐴  ∈  Fin  ∧  ∀ 𝑦  ∈  𝐴 𝐵  ∈  ℝ )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑤  ∈  { 𝑧  ∣  ∃ 𝑦  ∈  𝐴 𝑧  =  𝐵 } 𝑤  ≤  𝑥 )  | 
						
						
							| 11 | 
							
								
							 | 
							r19.23v | 
							⊢ ( ∀ 𝑦  ∈  𝐴 ( 𝑤  =  𝐵  →  𝑤  ≤  𝑥 )  ↔  ( ∃ 𝑦  ∈  𝐴 𝑤  =  𝐵  →  𝑤  ≤  𝑥 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							albii | 
							⊢ ( ∀ 𝑤 ∀ 𝑦  ∈  𝐴 ( 𝑤  =  𝐵  →  𝑤  ≤  𝑥 )  ↔  ∀ 𝑤 ( ∃ 𝑦  ∈  𝐴 𝑤  =  𝐵  →  𝑤  ≤  𝑥 ) )  | 
						
						
							| 13 | 
							
								
							 | 
							ralcom4 | 
							⊢ ( ∀ 𝑦  ∈  𝐴 ∀ 𝑤 ( 𝑤  =  𝐵  →  𝑤  ≤  𝑥 )  ↔  ∀ 𝑤 ∀ 𝑦  ∈  𝐴 ( 𝑤  =  𝐵  →  𝑤  ≤  𝑥 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							eqeq1 | 
							⊢ ( 𝑧  =  𝑤  →  ( 𝑧  =  𝐵  ↔  𝑤  =  𝐵 ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							rexbidv | 
							⊢ ( 𝑧  =  𝑤  →  ( ∃ 𝑦  ∈  𝐴 𝑧  =  𝐵  ↔  ∃ 𝑦  ∈  𝐴 𝑤  =  𝐵 ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							ralab | 
							⊢ ( ∀ 𝑤  ∈  { 𝑧  ∣  ∃ 𝑦  ∈  𝐴 𝑧  =  𝐵 } 𝑤  ≤  𝑥  ↔  ∀ 𝑤 ( ∃ 𝑦  ∈  𝐴 𝑤  =  𝐵  →  𝑤  ≤  𝑥 ) )  | 
						
						
							| 17 | 
							
								12 13 16
							 | 
							3bitr4i | 
							⊢ ( ∀ 𝑦  ∈  𝐴 ∀ 𝑤 ( 𝑤  =  𝐵  →  𝑤  ≤  𝑥 )  ↔  ∀ 𝑤  ∈  { 𝑧  ∣  ∃ 𝑦  ∈  𝐴 𝑧  =  𝐵 } 𝑤  ≤  𝑥 )  | 
						
						
							| 18 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑤 𝐵  ≤  𝑥  | 
						
						
							| 19 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝑤  =  𝐵  →  ( 𝑤  ≤  𝑥  ↔  𝐵  ≤  𝑥 ) )  | 
						
						
							| 20 | 
							
								18 19
							 | 
							ceqsalg | 
							⊢ ( 𝐵  ∈  ℝ  →  ( ∀ 𝑤 ( 𝑤  =  𝐵  →  𝑤  ≤  𝑥 )  ↔  𝐵  ≤  𝑥 ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							ralimi | 
							⊢ ( ∀ 𝑦  ∈  𝐴 𝐵  ∈  ℝ  →  ∀ 𝑦  ∈  𝐴 ( ∀ 𝑤 ( 𝑤  =  𝐵  →  𝑤  ≤  𝑥 )  ↔  𝐵  ≤  𝑥 ) )  | 
						
						
							| 22 | 
							
								
							 | 
							ralbi | 
							⊢ ( ∀ 𝑦  ∈  𝐴 ( ∀ 𝑤 ( 𝑤  =  𝐵  →  𝑤  ≤  𝑥 )  ↔  𝐵  ≤  𝑥 )  →  ( ∀ 𝑦  ∈  𝐴 ∀ 𝑤 ( 𝑤  =  𝐵  →  𝑤  ≤  𝑥 )  ↔  ∀ 𝑦  ∈  𝐴 𝐵  ≤  𝑥 ) )  | 
						
						
							| 23 | 
							
								21 22
							 | 
							syl | 
							⊢ ( ∀ 𝑦  ∈  𝐴 𝐵  ∈  ℝ  →  ( ∀ 𝑦  ∈  𝐴 ∀ 𝑤 ( 𝑤  =  𝐵  →  𝑤  ≤  𝑥 )  ↔  ∀ 𝑦  ∈  𝐴 𝐵  ≤  𝑥 ) )  | 
						
						
							| 24 | 
							
								17 23
							 | 
							bitr3id | 
							⊢ ( ∀ 𝑦  ∈  𝐴 𝐵  ∈  ℝ  →  ( ∀ 𝑤  ∈  { 𝑧  ∣  ∃ 𝑦  ∈  𝐴 𝑧  =  𝐵 } 𝑤  ≤  𝑥  ↔  ∀ 𝑦  ∈  𝐴 𝐵  ≤  𝑥 ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							rexbidv | 
							⊢ ( ∀ 𝑦  ∈  𝐴 𝐵  ∈  ℝ  →  ( ∃ 𝑥  ∈  ℝ ∀ 𝑤  ∈  { 𝑧  ∣  ∃ 𝑦  ∈  𝐴 𝑧  =  𝐵 } 𝑤  ≤  𝑥  ↔  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐴 𝐵  ≤  𝑥 ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							adantl | 
							⊢ ( ( 𝐴  ∈  Fin  ∧  ∀ 𝑦  ∈  𝐴 𝐵  ∈  ℝ )  →  ( ∃ 𝑥  ∈  ℝ ∀ 𝑤  ∈  { 𝑧  ∣  ∃ 𝑦  ∈  𝐴 𝑧  =  𝐵 } 𝑤  ≤  𝑥  ↔  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐴 𝐵  ≤  𝑥 ) )  | 
						
						
							| 27 | 
							
								10 26
							 | 
							mpbid | 
							⊢ ( ( 𝐴  ∈  Fin  ∧  ∀ 𝑦  ∈  𝐴 𝐵  ∈  ℝ )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑦  ∈  𝐴 𝐵  ≤  𝑥 )  |