Metamath Proof Explorer


Theorem rzal

Description: Vacuous quantification is always true. (Contributed by NM, 11-Mar-1997) (Proof shortened by Andrew Salmon, 26-Jun-2011) Avoid df-clel , ax-8 . (Revised by Gino Giotto, 2-Sep-2024)

Ref Expression
Assertion rzal A=xAφ

Proof

Step Hyp Ref Expression
1 dfcleq A=y|xxAxy|
2 1 biimpi A=y|xxAxy|
3 df-clab xy|xy
4 sbv xy
5 3 4 bitri xy|
6 5 bibi2i xAxy|xA
7 nbfal ¬xAxA
8 pm2.21 ¬xAxAφ
9 7 8 sylbir xAxAφ
10 6 9 sylbi xAxy|xAφ
11 2 10 sylg A=y|xxAφ
12 dfnul4 =y|
13 12 eqeq2i A=A=y|
14 df-ral xAφxxAφ
15 11 13 14 3imtr4i A=xAφ