Description: The infimum of a finite set of reals is less than or equal to any of its elements. (Contributed by Glauco Siliprandi, 8-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | infrefilb | |- ( ( B C_ RR /\ B e. Fin /\ A e. B ) -> inf ( B , RR , < ) <_ A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 | |- ( ( B C_ RR /\ B e. Fin /\ A e. B ) -> B C_ RR ) |
|
2 | fiminre2 | |- ( ( B C_ RR /\ B e. Fin ) -> E. x e. RR A. y e. B x <_ y ) |
|
3 | 2 | 3adant3 | |- ( ( B C_ RR /\ B e. Fin /\ A e. B ) -> E. x e. RR A. y e. B x <_ y ) |
4 | simp3 | |- ( ( B C_ RR /\ B e. Fin /\ A e. B ) -> A e. B ) |
|
5 | infrelb | |- ( ( B C_ RR /\ E. x e. RR A. y e. B x <_ y /\ A e. B ) -> inf ( B , RR , < ) <_ A ) |
|
6 | 1 3 4 5 | syl3anc | |- ( ( B C_ RR /\ B e. Fin /\ A e. B ) -> inf ( B , RR , < ) <_ A ) |