Metamath Proof Explorer


Theorem supfirege

Description: The supremum of a finite set of real numbers is greater than or equal to all the real numbers of the set. (Contributed by AV, 1-Oct-2019)

Ref Expression
Hypotheses supfirege.1
|- ( ph -> B C_ RR )
supfirege.2
|- ( ph -> B e. Fin )
supfirege.3
|- ( ph -> C e. B )
supfirege.4
|- ( ph -> S = sup ( B , RR , < ) )
Assertion supfirege
|- ( ph -> C <_ S )

Proof

Step Hyp Ref Expression
1 supfirege.1
 |-  ( ph -> B C_ RR )
2 supfirege.2
 |-  ( ph -> B e. Fin )
3 supfirege.3
 |-  ( ph -> C e. B )
4 supfirege.4
 |-  ( ph -> S = sup ( B , RR , < ) )
5 ltso
 |-  < Or RR
6 5 a1i
 |-  ( ph -> < Or RR )
7 6 1 2 3 4 supgtoreq
 |-  ( ph -> ( C < S \/ C = S ) )
8 1 3 sseldd
 |-  ( ph -> C e. RR )
9 3 ne0d
 |-  ( ph -> B =/= (/) )
10 fisupcl
 |-  ( ( < Or RR /\ ( B e. Fin /\ B =/= (/) /\ B C_ RR ) ) -> sup ( B , RR , < ) e. B )
11 6 2 9 1 10 syl13anc
 |-  ( ph -> sup ( B , RR , < ) e. B )
12 4 11 eqeltrd
 |-  ( ph -> S e. B )
13 1 12 sseldd
 |-  ( ph -> S e. RR )
14 8 13 leloed
 |-  ( ph -> ( C <_ S <-> ( C < S \/ C = S ) ) )
15 7 14 mpbird
 |-  ( ph -> C <_ S )