| Step |
Hyp |
Ref |
Expression |
| 1 |
|
supfirege.1 |
|- ( ph -> B C_ RR ) |
| 2 |
|
supfirege.2 |
|- ( ph -> B e. Fin ) |
| 3 |
|
supfirege.3 |
|- ( ph -> C e. B ) |
| 4 |
|
supfirege.4 |
|- ( ph -> S = sup ( B , RR , < ) ) |
| 5 |
|
ltso |
|- < Or RR |
| 6 |
5
|
a1i |
|- ( ph -> < Or RR ) |
| 7 |
6 1 2 3 4
|
supgtoreq |
|- ( ph -> ( C < S \/ C = S ) ) |
| 8 |
1 3
|
sseldd |
|- ( ph -> C e. RR ) |
| 9 |
3
|
ne0d |
|- ( ph -> B =/= (/) ) |
| 10 |
|
fisupcl |
|- ( ( < Or RR /\ ( B e. Fin /\ B =/= (/) /\ B C_ RR ) ) -> sup ( B , RR , < ) e. B ) |
| 11 |
6 2 9 1 10
|
syl13anc |
|- ( ph -> sup ( B , RR , < ) e. B ) |
| 12 |
4 11
|
eqeltrd |
|- ( ph -> S e. B ) |
| 13 |
1 12
|
sseldd |
|- ( ph -> S e. RR ) |
| 14 |
8 13
|
leloed |
|- ( ph -> ( C <_ S <-> ( C < S \/ C = S ) ) ) |
| 15 |
7 14
|
mpbird |
|- ( ph -> C <_ S ) |