| Step |
Hyp |
Ref |
Expression |
| 1 |
|
supfirege.1 |
⊢ ( 𝜑 → 𝐵 ⊆ ℝ ) |
| 2 |
|
supfirege.2 |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
| 3 |
|
supfirege.3 |
⊢ ( 𝜑 → 𝐶 ∈ 𝐵 ) |
| 4 |
|
supfirege.4 |
⊢ ( 𝜑 → 𝑆 = sup ( 𝐵 , ℝ , < ) ) |
| 5 |
|
ltso |
⊢ < Or ℝ |
| 6 |
5
|
a1i |
⊢ ( 𝜑 → < Or ℝ ) |
| 7 |
6 1 2 3 4
|
supgtoreq |
⊢ ( 𝜑 → ( 𝐶 < 𝑆 ∨ 𝐶 = 𝑆 ) ) |
| 8 |
1 3
|
sseldd |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 9 |
3
|
ne0d |
⊢ ( 𝜑 → 𝐵 ≠ ∅ ) |
| 10 |
|
fisupcl |
⊢ ( ( < Or ℝ ∧ ( 𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ ℝ ) ) → sup ( 𝐵 , ℝ , < ) ∈ 𝐵 ) |
| 11 |
6 2 9 1 10
|
syl13anc |
⊢ ( 𝜑 → sup ( 𝐵 , ℝ , < ) ∈ 𝐵 ) |
| 12 |
4 11
|
eqeltrd |
⊢ ( 𝜑 → 𝑆 ∈ 𝐵 ) |
| 13 |
1 12
|
sseldd |
⊢ ( 𝜑 → 𝑆 ∈ ℝ ) |
| 14 |
8 13
|
leloed |
⊢ ( 𝜑 → ( 𝐶 ≤ 𝑆 ↔ ( 𝐶 < 𝑆 ∨ 𝐶 = 𝑆 ) ) ) |
| 15 |
7 14
|
mpbird |
⊢ ( 𝜑 → 𝐶 ≤ 𝑆 ) |