Step |
Hyp |
Ref |
Expression |
1 |
|
infrecl |
|- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> inf ( A , RR , < ) e. RR ) |
2 |
1
|
recnd |
|- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> inf ( A , RR , < ) e. CC ) |
3 |
2
|
negnegd |
|- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> -u -u inf ( A , RR , < ) = inf ( A , RR , < ) ) |
4 |
|
negeq |
|- ( w = z -> -u w = -u z ) |
5 |
4
|
cbvmptv |
|- ( w e. RR |-> -u w ) = ( z e. RR |-> -u z ) |
6 |
5
|
mptpreima |
|- ( `' ( w e. RR |-> -u w ) " A ) = { z e. RR | -u z e. A } |
7 |
|
eqid |
|- ( w e. RR |-> -u w ) = ( w e. RR |-> -u w ) |
8 |
7
|
negiso |
|- ( ( w e. RR |-> -u w ) Isom < , `' < ( RR , RR ) /\ `' ( w e. RR |-> -u w ) = ( w e. RR |-> -u w ) ) |
9 |
8
|
simpri |
|- `' ( w e. RR |-> -u w ) = ( w e. RR |-> -u w ) |
10 |
9
|
imaeq1i |
|- ( `' ( w e. RR |-> -u w ) " A ) = ( ( w e. RR |-> -u w ) " A ) |
11 |
6 10
|
eqtr3i |
|- { z e. RR | -u z e. A } = ( ( w e. RR |-> -u w ) " A ) |
12 |
11
|
supeq1i |
|- sup ( { z e. RR | -u z e. A } , RR , < ) = sup ( ( ( w e. RR |-> -u w ) " A ) , RR , < ) |
13 |
8
|
simpli |
|- ( w e. RR |-> -u w ) Isom < , `' < ( RR , RR ) |
14 |
|
isocnv |
|- ( ( w e. RR |-> -u w ) Isom < , `' < ( RR , RR ) -> `' ( w e. RR |-> -u w ) Isom `' < , < ( RR , RR ) ) |
15 |
13 14
|
ax-mp |
|- `' ( w e. RR |-> -u w ) Isom `' < , < ( RR , RR ) |
16 |
|
isoeq1 |
|- ( `' ( w e. RR |-> -u w ) = ( w e. RR |-> -u w ) -> ( `' ( w e. RR |-> -u w ) Isom `' < , < ( RR , RR ) <-> ( w e. RR |-> -u w ) Isom `' < , < ( RR , RR ) ) ) |
17 |
9 16
|
ax-mp |
|- ( `' ( w e. RR |-> -u w ) Isom `' < , < ( RR , RR ) <-> ( w e. RR |-> -u w ) Isom `' < , < ( RR , RR ) ) |
18 |
15 17
|
mpbi |
|- ( w e. RR |-> -u w ) Isom `' < , < ( RR , RR ) |
19 |
18
|
a1i |
|- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> ( w e. RR |-> -u w ) Isom `' < , < ( RR , RR ) ) |
20 |
|
simp1 |
|- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> A C_ RR ) |
21 |
|
infm3 |
|- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> E. x e. RR ( A. y e. A -. y < x /\ A. y e. RR ( x < y -> E. z e. A z < y ) ) ) |
22 |
|
vex |
|- x e. _V |
23 |
|
vex |
|- y e. _V |
24 |
22 23
|
brcnv |
|- ( x `' < y <-> y < x ) |
25 |
24
|
notbii |
|- ( -. x `' < y <-> -. y < x ) |
26 |
25
|
ralbii |
|- ( A. y e. A -. x `' < y <-> A. y e. A -. y < x ) |
27 |
23 22
|
brcnv |
|- ( y `' < x <-> x < y ) |
28 |
|
vex |
|- z e. _V |
29 |
23 28
|
brcnv |
|- ( y `' < z <-> z < y ) |
30 |
29
|
rexbii |
|- ( E. z e. A y `' < z <-> E. z e. A z < y ) |
31 |
27 30
|
imbi12i |
|- ( ( y `' < x -> E. z e. A y `' < z ) <-> ( x < y -> E. z e. A z < y ) ) |
32 |
31
|
ralbii |
|- ( A. y e. RR ( y `' < x -> E. z e. A y `' < z ) <-> A. y e. RR ( x < y -> E. z e. A z < y ) ) |
33 |
26 32
|
anbi12i |
|- ( ( A. y e. A -. x `' < y /\ A. y e. RR ( y `' < x -> E. z e. A y `' < z ) ) <-> ( A. y e. A -. y < x /\ A. y e. RR ( x < y -> E. z e. A z < y ) ) ) |
34 |
33
|
rexbii |
|- ( E. x e. RR ( A. y e. A -. x `' < y /\ A. y e. RR ( y `' < x -> E. z e. A y `' < z ) ) <-> E. x e. RR ( A. y e. A -. y < x /\ A. y e. RR ( x < y -> E. z e. A z < y ) ) ) |
35 |
21 34
|
sylibr |
|- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> E. x e. RR ( A. y e. A -. x `' < y /\ A. y e. RR ( y `' < x -> E. z e. A y `' < z ) ) ) |
36 |
|
gtso |
|- `' < Or RR |
37 |
36
|
a1i |
|- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> `' < Or RR ) |
38 |
19 20 35 37
|
supiso |
|- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> sup ( ( ( w e. RR |-> -u w ) " A ) , RR , < ) = ( ( w e. RR |-> -u w ) ` sup ( A , RR , `' < ) ) ) |
39 |
12 38
|
eqtrid |
|- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> sup ( { z e. RR | -u z e. A } , RR , < ) = ( ( w e. RR |-> -u w ) ` sup ( A , RR , `' < ) ) ) |
40 |
|
df-inf |
|- inf ( A , RR , < ) = sup ( A , RR , `' < ) |
41 |
40
|
eqcomi |
|- sup ( A , RR , `' < ) = inf ( A , RR , < ) |
42 |
41
|
fveq2i |
|- ( ( w e. RR |-> -u w ) ` sup ( A , RR , `' < ) ) = ( ( w e. RR |-> -u w ) ` inf ( A , RR , < ) ) |
43 |
|
negeq |
|- ( w = inf ( A , RR , < ) -> -u w = -u inf ( A , RR , < ) ) |
44 |
|
negex |
|- -u inf ( A , RR , < ) e. _V |
45 |
43 7 44
|
fvmpt |
|- ( inf ( A , RR , < ) e. RR -> ( ( w e. RR |-> -u w ) ` inf ( A , RR , < ) ) = -u inf ( A , RR , < ) ) |
46 |
42 45
|
eqtrid |
|- ( inf ( A , RR , < ) e. RR -> ( ( w e. RR |-> -u w ) ` sup ( A , RR , `' < ) ) = -u inf ( A , RR , < ) ) |
47 |
1 46
|
syl |
|- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> ( ( w e. RR |-> -u w ) ` sup ( A , RR , `' < ) ) = -u inf ( A , RR , < ) ) |
48 |
39 47
|
eqtr2d |
|- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> -u inf ( A , RR , < ) = sup ( { z e. RR | -u z e. A } , RR , < ) ) |
49 |
48
|
negeqd |
|- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> -u -u inf ( A , RR , < ) = -u sup ( { z e. RR | -u z e. A } , RR , < ) ) |
50 |
3 49
|
eqtr3d |
|- ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A x <_ y ) -> inf ( A , RR , < ) = -u sup ( { z e. RR | -u z e. A } , RR , < ) ) |