Description: Equality inference for supremum. (Contributed by Paul Chapman, 22-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | supeq1i.1 | |- B = C |
|
| Assertion | supeq1i | |- sup ( B , A , R ) = sup ( C , A , R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supeq1i.1 | |- B = C |
|
| 2 | supeq1 | |- ( B = C -> sup ( B , A , R ) = sup ( C , A , R ) ) |
|
| 3 | 1 2 | ax-mp | |- sup ( B , A , R ) = sup ( C , A , R ) |