| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssel |  |-  ( A C_ ZZ -> ( -u w e. A -> -u w e. ZZ ) ) | 
						
							| 2 |  | recn |  |-  ( w e. RR -> w e. CC ) | 
						
							| 3 |  | negid |  |-  ( w e. CC -> ( w + -u w ) = 0 ) | 
						
							| 4 |  | 0z |  |-  0 e. ZZ | 
						
							| 5 | 3 4 | eqeltrdi |  |-  ( w e. CC -> ( w + -u w ) e. ZZ ) | 
						
							| 6 | 5 | pm4.71i |  |-  ( w e. CC <-> ( w e. CC /\ ( w + -u w ) e. ZZ ) ) | 
						
							| 7 |  | zrevaddcl |  |-  ( -u w e. ZZ -> ( ( w e. CC /\ ( w + -u w ) e. ZZ ) <-> w e. ZZ ) ) | 
						
							| 8 | 6 7 | bitrid |  |-  ( -u w e. ZZ -> ( w e. CC <-> w e. ZZ ) ) | 
						
							| 9 | 2 8 | imbitrid |  |-  ( -u w e. ZZ -> ( w e. RR -> w e. ZZ ) ) | 
						
							| 10 | 1 9 | syl6 |  |-  ( A C_ ZZ -> ( -u w e. A -> ( w e. RR -> w e. ZZ ) ) ) | 
						
							| 11 | 10 | impcomd |  |-  ( A C_ ZZ -> ( ( w e. RR /\ -u w e. A ) -> w e. ZZ ) ) | 
						
							| 12 |  | simpr |  |-  ( ( w e. RR /\ -u w e. A ) -> -u w e. A ) | 
						
							| 13 | 11 12 | jca2 |  |-  ( A C_ ZZ -> ( ( w e. RR /\ -u w e. A ) -> ( w e. ZZ /\ -u w e. A ) ) ) | 
						
							| 14 |  | zre |  |-  ( w e. ZZ -> w e. RR ) | 
						
							| 15 | 14 | anim1i |  |-  ( ( w e. ZZ /\ -u w e. A ) -> ( w e. RR /\ -u w e. A ) ) | 
						
							| 16 | 13 15 | impbid1 |  |-  ( A C_ ZZ -> ( ( w e. RR /\ -u w e. A ) <-> ( w e. ZZ /\ -u w e. A ) ) ) | 
						
							| 17 |  | negeq |  |-  ( z = w -> -u z = -u w ) | 
						
							| 18 | 17 | eleq1d |  |-  ( z = w -> ( -u z e. A <-> -u w e. A ) ) | 
						
							| 19 | 18 | elrab |  |-  ( w e. { z e. RR | -u z e. A } <-> ( w e. RR /\ -u w e. A ) ) | 
						
							| 20 | 18 | elrab |  |-  ( w e. { z e. ZZ | -u z e. A } <-> ( w e. ZZ /\ -u w e. A ) ) | 
						
							| 21 | 16 19 20 | 3bitr4g |  |-  ( A C_ ZZ -> ( w e. { z e. RR | -u z e. A } <-> w e. { z e. ZZ | -u z e. A } ) ) | 
						
							| 22 | 21 | eqrdv |  |-  ( A C_ ZZ -> { z e. RR | -u z e. A } = { z e. ZZ | -u z e. A } ) |