Metamath Proof Explorer


Theorem infssuzle

Description: The infimum of a subset of an upper set of integers is less than or equal to all members of the subset. (Contributed by NM, 11-Oct-2005) (Revised by AV, 5-Sep-2020)

Ref Expression
Assertion infssuzle SMASsupS<A

Proof

Step Hyp Ref Expression
1 ne0i ASS
2 uzwo SMSjSkSjk
3 1 2 sylan2 SMASjSkSjk
4 uzssz M
5 zssre
6 4 5 sstri M
7 sstr SMMS
8 6 7 mpan2 SMS
9 lbinfle SjSkSjkASsupS<A
10 9 3com23 SASjSkSjksupS<A
11 8 10 syl3an1 SMASjSkSjksupS<A
12 3 11 mpd3an3 SMASsupS<A