Metamath Proof Explorer


Theorem nncnd

Description: A positive integer is a complex number. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypothesis nnred.1 φA
Assertion nncnd φA

Proof

Step Hyp Ref Expression
1 nnred.1 φA
2 nnsscn
3 2 1 sselid φA