Description: The modulo operation is less than its second argument. (Contributed by NM, 10-Nov-2008)
Ref | Expression | ||
---|---|---|---|
Assertion | modlt | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recn | |
|
2 | rpcnne0 | |
|
3 | divcan2 | |
|
4 | 3 | 3expb | |
5 | 1 2 4 | syl2an | |
6 | 5 | oveq1d | |
7 | rpcn | |
|
8 | 7 | adantl | |
9 | rerpdivcl | |
|
10 | 9 | recnd | |
11 | refldivcl | |
|
12 | 11 | recnd | |
13 | 8 10 12 | subdid | |
14 | modval | |
|
15 | 6 13 14 | 3eqtr4rd | |
16 | fraclt1 | |
|
17 | 9 16 | syl | |
18 | divid | |
|
19 | 2 18 | syl | |
20 | 19 | adantl | |
21 | 17 20 | breqtrrd | |
22 | 9 11 | resubcld | |
23 | rpre | |
|
24 | 23 | adantl | |
25 | rpregt0 | |
|
26 | 25 | adantl | |
27 | ltmuldiv2 | |
|
28 | 22 24 26 27 | syl3anc | |
29 | 21 28 | mpbird | |
30 | 15 29 | eqbrtrd | |