Metamath Proof Explorer


Theorem modlt

Description: The modulo operation is less than its second argument. (Contributed by NM, 10-Nov-2008)

Ref Expression
Assertion modlt AB+AmodB<B

Proof

Step Hyp Ref Expression
1 recn AA
2 rpcnne0 B+BB0
3 divcan2 ABB0BAB=A
4 3 3expb ABB0BAB=A
5 1 2 4 syl2an AB+BAB=A
6 5 oveq1d AB+BABBAB=ABAB
7 rpcn B+B
8 7 adantl AB+B
9 rerpdivcl AB+AB
10 9 recnd AB+AB
11 refldivcl AB+AB
12 11 recnd AB+AB
13 8 10 12 subdid AB+BABAB=BABBAB
14 modval AB+AmodB=ABAB
15 6 13 14 3eqtr4rd AB+AmodB=BABAB
16 fraclt1 ABABAB<1
17 9 16 syl AB+ABAB<1
18 divid BB0BB=1
19 2 18 syl B+BB=1
20 19 adantl AB+BB=1
21 17 20 breqtrrd AB+ABAB<BB
22 9 11 resubcld AB+ABAB
23 rpre B+B
24 23 adantl AB+B
25 rpregt0 B+B0<B
26 25 adantl AB+B0<B
27 ltmuldiv2 ABABBB0<BBABAB<BABAB<BB
28 22 24 26 27 syl3anc AB+BABAB<BABAB<BB
29 21 28 mpbird AB+BABAB<B
30 15 29 eqbrtrd AB+AmodB<B