Metamath Proof Explorer


Theorem ltmuldiv2

Description: 'Less than' relationship between division and multiplication. (Contributed by NM, 18-Nov-2004)

Ref Expression
Assertion ltmuldiv2 A B C 0 < C C A < B A < B C

Proof

Step Hyp Ref Expression
1 recn A A
2 recn C C
3 mulcom A C A C = C A
4 1 2 3 syl2an A C A C = C A
5 4 adantrr A C 0 < C A C = C A
6 5 3adant2 A B C 0 < C A C = C A
7 6 breq1d A B C 0 < C A C < B C A < B
8 ltmuldiv A B C 0 < C A C < B A < B C
9 7 8 bitr3d A B C 0 < C C A < B A < B C