Metamath Proof Explorer


Theorem ltdivmul

Description: 'Less than' relationship between division and multiplication. (Contributed by NM, 18-Nov-2004)

Ref Expression
Assertion ltdivmul ABC0<CAC<BA<CB

Proof

Step Hyp Ref Expression
1 remulcl CBCB
2 1 ancoms BCCB
3 2 adantrr BC0<CCB
4 3 3adant1 ABC0<CCB
5 ltdiv1 ACBC0<CA<CBAC<CBC
6 4 5 syld3an2 ABC0<CA<CBAC<CBC
7 recn BB
8 7 adantr BC0<CB
9 recn CC
10 9 ad2antrl BC0<CC
11 gt0ne0 C0<CC0
12 11 adantl BC0<CC0
13 8 10 12 divcan3d BC0<CCBC=B
14 13 3adant1 ABC0<CCBC=B
15 14 breq2d ABC0<CAC<CBCAC<B
16 6 15 bitr2d ABC0<CAC<BA<CB