Metamath Proof Explorer


Theorem ltdiv1

Description: Division of both sides of 'less than' by a positive number. (Contributed by NM, 10-Oct-2004) (Revised by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion ltdiv1 ABC0<CA<BAC<BC

Proof

Step Hyp Ref Expression
1 simp1 ABC0<CA
2 simp2 ABC0<CB
3 simp3l ABC0<CC
4 simp3r ABC0<C0<C
5 4 gt0ne0d ABC0<CC0
6 3 5 rereccld ABC0<C1C
7 recgt0 C0<C0<1C
8 7 3ad2ant3 ABC0<C0<1C
9 ltmul1 AB1C0<1CA<BA1C<B1C
10 1 2 6 8 9 syl112anc ABC0<CA<BA1C<B1C
11 1 recnd ABC0<CA
12 3 recnd ABC0<CC
13 11 12 5 divrecd ABC0<CAC=A1C
14 2 recnd ABC0<CB
15 14 12 5 divrecd ABC0<CBC=B1C
16 13 15 breq12d ABC0<CAC<BCA1C<B1C
17 10 16 bitr4d ABC0<CA<BAC<BC