Metamath Proof Explorer


Theorem ltdiv1

Description: Division of both sides of 'less than' by a positive number. (Contributed by NM, 10-Oct-2004) (Revised by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion ltdiv1 A B C 0 < C A < B A C < B C

Proof

Step Hyp Ref Expression
1 simp1 A B C 0 < C A
2 simp2 A B C 0 < C B
3 simp3l A B C 0 < C C
4 simp3r A B C 0 < C 0 < C
5 4 gt0ne0d A B C 0 < C C 0
6 3 5 rereccld A B C 0 < C 1 C
7 recgt0 C 0 < C 0 < 1 C
8 7 3ad2ant3 A B C 0 < C 0 < 1 C
9 ltmul1 A B 1 C 0 < 1 C A < B A 1 C < B 1 C
10 1 2 6 8 9 syl112anc A B C 0 < C A < B A 1 C < B 1 C
11 1 recnd A B C 0 < C A
12 3 recnd A B C 0 < C C
13 11 12 5 divrecd A B C 0 < C A C = A 1 C
14 2 recnd A B C 0 < C B
15 14 12 5 divrecd A B C 0 < C B C = B 1 C
16 13 15 breq12d A B C 0 < C A C < B C A 1 C < B 1 C
17 10 16 bitr4d A B C 0 < C A < B A C < B C