Metamath Proof Explorer


Theorem lediv1

Description: Division of both sides of a less than or equal to relation by a positive number. (Contributed by NM, 18-Nov-2004)

Ref Expression
Assertion lediv1 ABC0<CABACBC

Proof

Step Hyp Ref Expression
1 ltdiv1 BAC0<CB<ABC<AC
2 1 3com12 ABC0<CB<ABC<AC
3 2 notbid ABC0<C¬B<A¬BC<AC
4 lenlt ABAB¬B<A
5 4 3adant3 ABC0<CAB¬B<A
6 gt0ne0 C0<CC0
7 6 3adant1 AC0<CC0
8 redivcl ACC0AC
9 7 8 syld3an3 AC0<CAC
10 9 3expb AC0<CAC
11 10 3adant2 ABC0<CAC
12 6 3adant1 BC0<CC0
13 redivcl BCC0BC
14 12 13 syld3an3 BC0<CBC
15 14 3expb BC0<CBC
16 15 3adant1 ABC0<CBC
17 11 16 lenltd ABC0<CACBC¬BC<AC
18 3 5 17 3bitr4d ABC0<CABACBC