Description: Division of both sides of a less than or equal to relation by a positive number. (Contributed by NM, 18-Nov-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | lediv1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltdiv1 | |
|
2 | 1 | 3com12 | |
3 | 2 | notbid | |
4 | lenlt | |
|
5 | 4 | 3adant3 | |
6 | gt0ne0 | |
|
7 | 6 | 3adant1 | |
8 | redivcl | |
|
9 | 7 8 | syld3an3 | |
10 | 9 | 3expb | |
11 | 10 | 3adant2 | |
12 | 6 | 3adant1 | |
13 | redivcl | |
|
14 | 12 13 | syld3an3 | |
15 | 14 | 3expb | |
16 | 15 | 3adant1 | |
17 | 11 16 | lenltd | |
18 | 3 5 17 | 3bitr4d | |