Description: The powers of the element 1 give a ring homomorphism from ZZ to a ring. (Contributed by Mario Carneiro, 14-Jun-2015) (Revised by AV, 12-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mulgghm2.m | |
|
mulgghm2.f | |
||
mulgrhm.1 | |
||
Assertion | mulgrhm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulgghm2.m | |
|
2 | mulgghm2.f | |
|
3 | mulgrhm.1 | |
|
4 | zringbas | |
|
5 | zring1 | |
|
6 | zringmulr | |
|
7 | eqid | |
|
8 | zringring | |
|
9 | 8 | a1i | |
10 | id | |
|
11 | 1z | |
|
12 | oveq1 | |
|
13 | ovex | |
|
14 | 12 2 13 | fvmpt | |
15 | 11 14 | ax-mp | |
16 | eqid | |
|
17 | 16 3 | ringidcl | |
18 | 16 1 | mulg1 | |
19 | 17 18 | syl | |
20 | 15 19 | eqtrid | |
21 | ringgrp | |
|
22 | 21 | adantr | |
23 | simprr | |
|
24 | 17 | adantr | |
25 | 16 1 | mulgcl | |
26 | 22 23 24 25 | syl3anc | |
27 | 16 7 3 | ringlidm | |
28 | 26 27 | syldan | |
29 | 28 | oveq2d | |
30 | simpl | |
|
31 | simprl | |
|
32 | 16 1 7 | mulgass2 | |
33 | 30 31 24 26 32 | syl13anc | |
34 | 16 1 | mulgass | |
35 | 22 31 23 24 34 | syl13anc | |
36 | 29 33 35 | 3eqtr4rd | |
37 | zmulcl | |
|
38 | 37 | adantl | |
39 | oveq1 | |
|
40 | ovex | |
|
41 | 39 2 40 | fvmpt | |
42 | 38 41 | syl | |
43 | oveq1 | |
|
44 | ovex | |
|
45 | 43 2 44 | fvmpt | |
46 | oveq1 | |
|
47 | ovex | |
|
48 | 46 2 47 | fvmpt | |
49 | 45 48 | oveqan12d | |
50 | 49 | adantl | |
51 | 36 42 50 | 3eqtr4d | |
52 | 1 2 16 | mulgghm2 | |
53 | 21 17 52 | syl2anc | |
54 | 4 5 3 6 7 9 10 20 51 53 | isrhm2d | |