Metamath Proof Explorer


Theorem zmulcl

Description: Closure of multiplication of integers. (Contributed by NM, 30-Jul-2004)

Ref Expression
Assertion zmulcl MN M N

Proof

Step Hyp Ref Expression
1 elznn0 MMM0M0
2 elznn0 NNN0N0
3 nn0mulcl M0N0 M N0
4 3 orcd M0N0 M N0 M N0
5 4 a1i MNM0N0 M N0 M N0
6 remulcl MN M N
7 5 6 jctild MNM0N0 M N M N0 M N0
8 nn0mulcl M0N0- M N0
9 recn MM
10 recn NN
11 mulneg1 MN- M N= M N
12 9 10 11 syl2an MN- M N= M N
13 12 eleq1d MN- M N0 M N0
14 8 13 imbitrid MNM0N0 M N0
15 olc M N0 M N0 M N0
16 14 15 syl6 MNM0N0 M N0 M N0
17 16 6 jctild MNM0N0 M N M N0 M N0
18 nn0mulcl M0N0M- N0
19 mulneg2 MNM- N= M N
20 9 10 19 syl2an MNM- N= M N
21 20 eleq1d MNM- N0 M N0
22 18 21 imbitrid MNM0N0 M N0
23 22 15 syl6 MNM0N0 M N0 M N0
24 23 6 jctild MNM0N0 M N M N0 M N0
25 nn0mulcl M0N0- M- N0
26 mul2neg MN- M- N= M N
27 9 10 26 syl2an MN- M- N= M N
28 27 eleq1d MN- M- N0 M N0
29 25 28 imbitrid MNM0N0 M N0
30 orc M N0 M N0 M N0
31 29 30 syl6 MNM0N0 M N0 M N0
32 31 6 jctild MNM0N0 M N M N0 M N0
33 7 17 24 32 ccased MNM0M0N0N0 M N M N0 M N0
34 elznn0 M N M N M N0 M N0
35 33 34 syl6ibr MNM0M0N0N0 M N
36 35 imp MNM0M0N0N0 M N
37 36 an4s MM0M0NN0N0 M N
38 1 2 37 syl2anb MN M N