Metamath Proof Explorer


Theorem zmulcl

Description: Closure of multiplication of integers. (Contributed by NM, 30-Jul-2004)

Ref Expression
Assertion zmulcl M N M N

Proof

Step Hyp Ref Expression
1 elznn0 M M M 0 M 0
2 elznn0 N N N 0 N 0
3 nn0mulcl M 0 N 0 M N 0
4 3 orcd M 0 N 0 M N 0 M N 0
5 4 a1i M N M 0 N 0 M N 0 M N 0
6 remulcl M N M N
7 5 6 jctild M N M 0 N 0 M N M N 0 M N 0
8 nn0mulcl M 0 N 0 -M N 0
9 recn M M
10 recn N N
11 mulneg1 M N -M N = M N
12 9 10 11 syl2an M N -M N = M N
13 12 eleq1d M N -M N 0 M N 0
14 8 13 syl5ib M N M 0 N 0 M N 0
15 olc M N 0 M N 0 M N 0
16 14 15 syl6 M N M 0 N 0 M N 0 M N 0
17 16 6 jctild M N M 0 N 0 M N M N 0 M N 0
18 nn0mulcl M 0 N 0 M -N 0
19 mulneg2 M N M -N = M N
20 9 10 19 syl2an M N M -N = M N
21 20 eleq1d M N M -N 0 M N 0
22 18 21 syl5ib M N M 0 N 0 M N 0
23 22 15 syl6 M N M 0 N 0 M N 0 M N 0
24 23 6 jctild M N M 0 N 0 M N M N 0 M N 0
25 nn0mulcl M 0 N 0 -M -N 0
26 mul2neg M N -M -N = M N
27 9 10 26 syl2an M N -M -N = M N
28 27 eleq1d M N -M -N 0 M N 0
29 25 28 syl5ib M N M 0 N 0 M N 0
30 orc M N 0 M N 0 M N 0
31 29 30 syl6 M N M 0 N 0 M N 0 M N 0
32 31 6 jctild M N M 0 N 0 M N M N 0 M N 0
33 7 17 24 32 ccased M N M 0 M 0 N 0 N 0 M N M N 0 M N 0
34 elznn0 M N M N M N 0 M N 0
35 33 34 syl6ibr M N M 0 M 0 N 0 N 0 M N
36 35 imp M N M 0 M 0 N 0 N 0 M N
37 36 an4s M M 0 M 0 N N 0 N 0 M N
38 1 2 37 syl2anb M N M N