| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulgghm2.m |
⊢ · = ( .g ‘ 𝑅 ) |
| 2 |
|
mulgghm2.f |
⊢ 𝐹 = ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 1 ) ) |
| 3 |
|
mulgrhm.1 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
| 4 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
| 5 |
|
zring1 |
⊢ 1 = ( 1r ‘ ℤring ) |
| 6 |
|
zringmulr |
⊢ · = ( .r ‘ ℤring ) |
| 7 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 8 |
|
zringring |
⊢ ℤring ∈ Ring |
| 9 |
8
|
a1i |
⊢ ( 𝑅 ∈ Ring → ℤring ∈ Ring ) |
| 10 |
|
id |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Ring ) |
| 11 |
|
1z |
⊢ 1 ∈ ℤ |
| 12 |
|
oveq1 |
⊢ ( 𝑛 = 1 → ( 𝑛 · 1 ) = ( 1 · 1 ) ) |
| 13 |
|
ovex |
⊢ ( 1 · 1 ) ∈ V |
| 14 |
12 2 13
|
fvmpt |
⊢ ( 1 ∈ ℤ → ( 𝐹 ‘ 1 ) = ( 1 · 1 ) ) |
| 15 |
11 14
|
ax-mp |
⊢ ( 𝐹 ‘ 1 ) = ( 1 · 1 ) |
| 16 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 17 |
16 3
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → 1 ∈ ( Base ‘ 𝑅 ) ) |
| 18 |
16 1
|
mulg1 |
⊢ ( 1 ∈ ( Base ‘ 𝑅 ) → ( 1 · 1 ) = 1 ) |
| 19 |
17 18
|
syl |
⊢ ( 𝑅 ∈ Ring → ( 1 · 1 ) = 1 ) |
| 20 |
15 19
|
eqtrid |
⊢ ( 𝑅 ∈ Ring → ( 𝐹 ‘ 1 ) = 1 ) |
| 21 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → 𝑅 ∈ Grp ) |
| 23 |
|
simprr |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → 𝑦 ∈ ℤ ) |
| 24 |
17
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → 1 ∈ ( Base ‘ 𝑅 ) ) |
| 25 |
16 1
|
mulgcl |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 1 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑦 · 1 ) ∈ ( Base ‘ 𝑅 ) ) |
| 26 |
22 23 24 25
|
syl3anc |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑦 · 1 ) ∈ ( Base ‘ 𝑅 ) ) |
| 27 |
16 7 3
|
ringlidm |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑦 · 1 ) ∈ ( Base ‘ 𝑅 ) ) → ( 1 ( .r ‘ 𝑅 ) ( 𝑦 · 1 ) ) = ( 𝑦 · 1 ) ) |
| 28 |
26 27
|
syldan |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 1 ( .r ‘ 𝑅 ) ( 𝑦 · 1 ) ) = ( 𝑦 · 1 ) ) |
| 29 |
28
|
oveq2d |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑥 · ( 1 ( .r ‘ 𝑅 ) ( 𝑦 · 1 ) ) ) = ( 𝑥 · ( 𝑦 · 1 ) ) ) |
| 30 |
|
simpl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → 𝑅 ∈ Ring ) |
| 31 |
|
simprl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → 𝑥 ∈ ℤ ) |
| 32 |
16 1 7
|
mulgass2 |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ℤ ∧ 1 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑦 · 1 ) ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑥 · 1 ) ( .r ‘ 𝑅 ) ( 𝑦 · 1 ) ) = ( 𝑥 · ( 1 ( .r ‘ 𝑅 ) ( 𝑦 · 1 ) ) ) ) |
| 33 |
30 31 24 26 32
|
syl13anc |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝑥 · 1 ) ( .r ‘ 𝑅 ) ( 𝑦 · 1 ) ) = ( 𝑥 · ( 1 ( .r ‘ 𝑅 ) ( 𝑦 · 1 ) ) ) ) |
| 34 |
16 1
|
mulgass |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 1 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝑥 · 𝑦 ) · 1 ) = ( 𝑥 · ( 𝑦 · 1 ) ) ) |
| 35 |
22 31 23 24 34
|
syl13anc |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝑥 · 𝑦 ) · 1 ) = ( 𝑥 · ( 𝑦 · 1 ) ) ) |
| 36 |
29 33 35
|
3eqtr4rd |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝑥 · 𝑦 ) · 1 ) = ( ( 𝑥 · 1 ) ( .r ‘ 𝑅 ) ( 𝑦 · 1 ) ) ) |
| 37 |
|
zmulcl |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( 𝑥 · 𝑦 ) ∈ ℤ ) |
| 38 |
37
|
adantl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑥 · 𝑦 ) ∈ ℤ ) |
| 39 |
|
oveq1 |
⊢ ( 𝑛 = ( 𝑥 · 𝑦 ) → ( 𝑛 · 1 ) = ( ( 𝑥 · 𝑦 ) · 1 ) ) |
| 40 |
|
ovex |
⊢ ( ( 𝑥 · 𝑦 ) · 1 ) ∈ V |
| 41 |
39 2 40
|
fvmpt |
⊢ ( ( 𝑥 · 𝑦 ) ∈ ℤ → ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑥 · 𝑦 ) · 1 ) ) |
| 42 |
38 41
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝑥 · 𝑦 ) · 1 ) ) |
| 43 |
|
oveq1 |
⊢ ( 𝑛 = 𝑥 → ( 𝑛 · 1 ) = ( 𝑥 · 1 ) ) |
| 44 |
|
ovex |
⊢ ( 𝑥 · 1 ) ∈ V |
| 45 |
43 2 44
|
fvmpt |
⊢ ( 𝑥 ∈ ℤ → ( 𝐹 ‘ 𝑥 ) = ( 𝑥 · 1 ) ) |
| 46 |
|
oveq1 |
⊢ ( 𝑛 = 𝑦 → ( 𝑛 · 1 ) = ( 𝑦 · 1 ) ) |
| 47 |
|
ovex |
⊢ ( 𝑦 · 1 ) ∈ V |
| 48 |
46 2 47
|
fvmpt |
⊢ ( 𝑦 ∈ ℤ → ( 𝐹 ‘ 𝑦 ) = ( 𝑦 · 1 ) ) |
| 49 |
45 48
|
oveqan12d |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝑥 · 1 ) ( .r ‘ 𝑅 ) ( 𝑦 · 1 ) ) ) |
| 50 |
49
|
adantl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝑥 · 1 ) ( .r ‘ 𝑅 ) ( 𝑦 · 1 ) ) ) |
| 51 |
36 42 50
|
3eqtr4d |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝐹 ‘ ( 𝑥 · 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 52 |
1 2 16
|
mulgghm2 |
⊢ ( ( 𝑅 ∈ Grp ∧ 1 ∈ ( Base ‘ 𝑅 ) ) → 𝐹 ∈ ( ℤring GrpHom 𝑅 ) ) |
| 53 |
21 17 52
|
syl2anc |
⊢ ( 𝑅 ∈ Ring → 𝐹 ∈ ( ℤring GrpHom 𝑅 ) ) |
| 54 |
4 5 3 6 7 9 10 20 51 53
|
isrhm2d |
⊢ ( 𝑅 ∈ Ring → 𝐹 ∈ ( ℤring RingHom 𝑅 ) ) |