| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulgass2.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
mulgass2.m |
⊢ · = ( .g ‘ 𝑅 ) |
| 3 |
|
mulgass2.t |
⊢ × = ( .r ‘ 𝑅 ) |
| 4 |
|
oveq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 · 𝑋 ) = ( 0 · 𝑋 ) ) |
| 5 |
4
|
oveq1d |
⊢ ( 𝑥 = 0 → ( ( 𝑥 · 𝑋 ) × 𝑌 ) = ( ( 0 · 𝑋 ) × 𝑌 ) ) |
| 6 |
|
oveq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 · ( 𝑋 × 𝑌 ) ) = ( 0 · ( 𝑋 × 𝑌 ) ) ) |
| 7 |
5 6
|
eqeq12d |
⊢ ( 𝑥 = 0 → ( ( ( 𝑥 · 𝑋 ) × 𝑌 ) = ( 𝑥 · ( 𝑋 × 𝑌 ) ) ↔ ( ( 0 · 𝑋 ) × 𝑌 ) = ( 0 · ( 𝑋 × 𝑌 ) ) ) ) |
| 8 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 · 𝑋 ) = ( 𝑦 · 𝑋 ) ) |
| 9 |
8
|
oveq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 · 𝑋 ) × 𝑌 ) = ( ( 𝑦 · 𝑋 ) × 𝑌 ) ) |
| 10 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 · ( 𝑋 × 𝑌 ) ) = ( 𝑦 · ( 𝑋 × 𝑌 ) ) ) |
| 11 |
9 10
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑥 · 𝑋 ) × 𝑌 ) = ( 𝑥 · ( 𝑋 × 𝑌 ) ) ↔ ( ( 𝑦 · 𝑋 ) × 𝑌 ) = ( 𝑦 · ( 𝑋 × 𝑌 ) ) ) ) |
| 12 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 · 𝑋 ) = ( ( 𝑦 + 1 ) · 𝑋 ) ) |
| 13 |
12
|
oveq1d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑥 · 𝑋 ) × 𝑌 ) = ( ( ( 𝑦 + 1 ) · 𝑋 ) × 𝑌 ) ) |
| 14 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 · ( 𝑋 × 𝑌 ) ) = ( ( 𝑦 + 1 ) · ( 𝑋 × 𝑌 ) ) ) |
| 15 |
13 14
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( ( 𝑥 · 𝑋 ) × 𝑌 ) = ( 𝑥 · ( 𝑋 × 𝑌 ) ) ↔ ( ( ( 𝑦 + 1 ) · 𝑋 ) × 𝑌 ) = ( ( 𝑦 + 1 ) · ( 𝑋 × 𝑌 ) ) ) ) |
| 16 |
|
oveq1 |
⊢ ( 𝑥 = - 𝑦 → ( 𝑥 · 𝑋 ) = ( - 𝑦 · 𝑋 ) ) |
| 17 |
16
|
oveq1d |
⊢ ( 𝑥 = - 𝑦 → ( ( 𝑥 · 𝑋 ) × 𝑌 ) = ( ( - 𝑦 · 𝑋 ) × 𝑌 ) ) |
| 18 |
|
oveq1 |
⊢ ( 𝑥 = - 𝑦 → ( 𝑥 · ( 𝑋 × 𝑌 ) ) = ( - 𝑦 · ( 𝑋 × 𝑌 ) ) ) |
| 19 |
17 18
|
eqeq12d |
⊢ ( 𝑥 = - 𝑦 → ( ( ( 𝑥 · 𝑋 ) × 𝑌 ) = ( 𝑥 · ( 𝑋 × 𝑌 ) ) ↔ ( ( - 𝑦 · 𝑋 ) × 𝑌 ) = ( - 𝑦 · ( 𝑋 × 𝑌 ) ) ) ) |
| 20 |
|
oveq1 |
⊢ ( 𝑥 = 𝑁 → ( 𝑥 · 𝑋 ) = ( 𝑁 · 𝑋 ) ) |
| 21 |
20
|
oveq1d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝑥 · 𝑋 ) × 𝑌 ) = ( ( 𝑁 · 𝑋 ) × 𝑌 ) ) |
| 22 |
|
oveq1 |
⊢ ( 𝑥 = 𝑁 → ( 𝑥 · ( 𝑋 × 𝑌 ) ) = ( 𝑁 · ( 𝑋 × 𝑌 ) ) ) |
| 23 |
21 22
|
eqeq12d |
⊢ ( 𝑥 = 𝑁 → ( ( ( 𝑥 · 𝑋 ) × 𝑌 ) = ( 𝑥 · ( 𝑋 × 𝑌 ) ) ↔ ( ( 𝑁 · 𝑋 ) × 𝑌 ) = ( 𝑁 · ( 𝑋 × 𝑌 ) ) ) ) |
| 24 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 25 |
1 3 24
|
ringlz |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ) → ( ( 0g ‘ 𝑅 ) × 𝑌 ) = ( 0g ‘ 𝑅 ) ) |
| 26 |
25
|
3adant3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ( 0g ‘ 𝑅 ) × 𝑌 ) = ( 0g ‘ 𝑅 ) ) |
| 27 |
|
simp3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
| 28 |
1 24 2
|
mulg0 |
⊢ ( 𝑋 ∈ 𝐵 → ( 0 · 𝑋 ) = ( 0g ‘ 𝑅 ) ) |
| 29 |
27 28
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 0 · 𝑋 ) = ( 0g ‘ 𝑅 ) ) |
| 30 |
29
|
oveq1d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ( 0 · 𝑋 ) × 𝑌 ) = ( ( 0g ‘ 𝑅 ) × 𝑌 ) ) |
| 31 |
1 3
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 × 𝑌 ) ∈ 𝐵 ) |
| 32 |
31
|
3com23 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 × 𝑌 ) ∈ 𝐵 ) |
| 33 |
1 24 2
|
mulg0 |
⊢ ( ( 𝑋 × 𝑌 ) ∈ 𝐵 → ( 0 · ( 𝑋 × 𝑌 ) ) = ( 0g ‘ 𝑅 ) ) |
| 34 |
32 33
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 0 · ( 𝑋 × 𝑌 ) ) = ( 0g ‘ 𝑅 ) ) |
| 35 |
26 30 34
|
3eqtr4d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ( 0 · 𝑋 ) × 𝑌 ) = ( 0 · ( 𝑋 × 𝑌 ) ) ) |
| 36 |
|
oveq1 |
⊢ ( ( ( 𝑦 · 𝑋 ) × 𝑌 ) = ( 𝑦 · ( 𝑋 × 𝑌 ) ) → ( ( ( 𝑦 · 𝑋 ) × 𝑌 ) ( +g ‘ 𝑅 ) ( 𝑋 × 𝑌 ) ) = ( ( 𝑦 · ( 𝑋 × 𝑌 ) ) ( +g ‘ 𝑅 ) ( 𝑋 × 𝑌 ) ) ) |
| 37 |
|
simpl1 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ0 ) → 𝑅 ∈ Ring ) |
| 38 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
| 39 |
37 38
|
syl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ0 ) → 𝑅 ∈ Grp ) |
| 40 |
|
nn0z |
⊢ ( 𝑦 ∈ ℕ0 → 𝑦 ∈ ℤ ) |
| 41 |
40
|
adantl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ0 ) → 𝑦 ∈ ℤ ) |
| 42 |
27
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ0 ) → 𝑋 ∈ 𝐵 ) |
| 43 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 44 |
1 2 43
|
mulgp1 |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑦 + 1 ) · 𝑋 ) = ( ( 𝑦 · 𝑋 ) ( +g ‘ 𝑅 ) 𝑋 ) ) |
| 45 |
39 41 42 44
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑦 + 1 ) · 𝑋 ) = ( ( 𝑦 · 𝑋 ) ( +g ‘ 𝑅 ) 𝑋 ) ) |
| 46 |
45
|
oveq1d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ0 ) → ( ( ( 𝑦 + 1 ) · 𝑋 ) × 𝑌 ) = ( ( ( 𝑦 · 𝑋 ) ( +g ‘ 𝑅 ) 𝑋 ) × 𝑌 ) ) |
| 47 |
38
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → 𝑅 ∈ Grp ) |
| 48 |
47
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ0 ) → 𝑅 ∈ Grp ) |
| 49 |
1 2
|
mulgcl |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑦 · 𝑋 ) ∈ 𝐵 ) |
| 50 |
48 41 42 49
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ0 ) → ( 𝑦 · 𝑋 ) ∈ 𝐵 ) |
| 51 |
|
simpl2 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ0 ) → 𝑌 ∈ 𝐵 ) |
| 52 |
1 43 3
|
ringdir |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝑦 · 𝑋 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( ( 𝑦 · 𝑋 ) ( +g ‘ 𝑅 ) 𝑋 ) × 𝑌 ) = ( ( ( 𝑦 · 𝑋 ) × 𝑌 ) ( +g ‘ 𝑅 ) ( 𝑋 × 𝑌 ) ) ) |
| 53 |
37 50 42 51 52
|
syl13anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ0 ) → ( ( ( 𝑦 · 𝑋 ) ( +g ‘ 𝑅 ) 𝑋 ) × 𝑌 ) = ( ( ( 𝑦 · 𝑋 ) × 𝑌 ) ( +g ‘ 𝑅 ) ( 𝑋 × 𝑌 ) ) ) |
| 54 |
46 53
|
eqtrd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ0 ) → ( ( ( 𝑦 + 1 ) · 𝑋 ) × 𝑌 ) = ( ( ( 𝑦 · 𝑋 ) × 𝑌 ) ( +g ‘ 𝑅 ) ( 𝑋 × 𝑌 ) ) ) |
| 55 |
32
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ0 ) → ( 𝑋 × 𝑌 ) ∈ 𝐵 ) |
| 56 |
1 2 43
|
mulgp1 |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ ( 𝑋 × 𝑌 ) ∈ 𝐵 ) → ( ( 𝑦 + 1 ) · ( 𝑋 × 𝑌 ) ) = ( ( 𝑦 · ( 𝑋 × 𝑌 ) ) ( +g ‘ 𝑅 ) ( 𝑋 × 𝑌 ) ) ) |
| 57 |
39 41 55 56
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑦 + 1 ) · ( 𝑋 × 𝑌 ) ) = ( ( 𝑦 · ( 𝑋 × 𝑌 ) ) ( +g ‘ 𝑅 ) ( 𝑋 × 𝑌 ) ) ) |
| 58 |
54 57
|
eqeq12d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ0 ) → ( ( ( ( 𝑦 + 1 ) · 𝑋 ) × 𝑌 ) = ( ( 𝑦 + 1 ) · ( 𝑋 × 𝑌 ) ) ↔ ( ( ( 𝑦 · 𝑋 ) × 𝑌 ) ( +g ‘ 𝑅 ) ( 𝑋 × 𝑌 ) ) = ( ( 𝑦 · ( 𝑋 × 𝑌 ) ) ( +g ‘ 𝑅 ) ( 𝑋 × 𝑌 ) ) ) ) |
| 59 |
36 58
|
imbitrrid |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ0 ) → ( ( ( 𝑦 · 𝑋 ) × 𝑌 ) = ( 𝑦 · ( 𝑋 × 𝑌 ) ) → ( ( ( 𝑦 + 1 ) · 𝑋 ) × 𝑌 ) = ( ( 𝑦 + 1 ) · ( 𝑋 × 𝑌 ) ) ) ) |
| 60 |
59
|
ex |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑦 ∈ ℕ0 → ( ( ( 𝑦 · 𝑋 ) × 𝑌 ) = ( 𝑦 · ( 𝑋 × 𝑌 ) ) → ( ( ( 𝑦 + 1 ) · 𝑋 ) × 𝑌 ) = ( ( 𝑦 + 1 ) · ( 𝑋 × 𝑌 ) ) ) ) ) |
| 61 |
|
fveq2 |
⊢ ( ( ( 𝑦 · 𝑋 ) × 𝑌 ) = ( 𝑦 · ( 𝑋 × 𝑌 ) ) → ( ( invg ‘ 𝑅 ) ‘ ( ( 𝑦 · 𝑋 ) × 𝑌 ) ) = ( ( invg ‘ 𝑅 ) ‘ ( 𝑦 · ( 𝑋 × 𝑌 ) ) ) ) |
| 62 |
47
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ ) → 𝑅 ∈ Grp ) |
| 63 |
|
nnz |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℤ ) |
| 64 |
63
|
adantl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ ) → 𝑦 ∈ ℤ ) |
| 65 |
27
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ ) → 𝑋 ∈ 𝐵 ) |
| 66 |
|
eqid |
⊢ ( invg ‘ 𝑅 ) = ( invg ‘ 𝑅 ) |
| 67 |
1 2 66
|
mulgneg |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( - 𝑦 · 𝑋 ) = ( ( invg ‘ 𝑅 ) ‘ ( 𝑦 · 𝑋 ) ) ) |
| 68 |
62 64 65 67
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ ) → ( - 𝑦 · 𝑋 ) = ( ( invg ‘ 𝑅 ) ‘ ( 𝑦 · 𝑋 ) ) ) |
| 69 |
68
|
oveq1d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ ) → ( ( - 𝑦 · 𝑋 ) × 𝑌 ) = ( ( ( invg ‘ 𝑅 ) ‘ ( 𝑦 · 𝑋 ) ) × 𝑌 ) ) |
| 70 |
|
simpl1 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ ) → 𝑅 ∈ Ring ) |
| 71 |
62 64 65 49
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ ) → ( 𝑦 · 𝑋 ) ∈ 𝐵 ) |
| 72 |
|
simpl2 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ ) → 𝑌 ∈ 𝐵 ) |
| 73 |
1 3 66 70 71 72
|
ringmneg1 |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ ) → ( ( ( invg ‘ 𝑅 ) ‘ ( 𝑦 · 𝑋 ) ) × 𝑌 ) = ( ( invg ‘ 𝑅 ) ‘ ( ( 𝑦 · 𝑋 ) × 𝑌 ) ) ) |
| 74 |
69 73
|
eqtrd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ ) → ( ( - 𝑦 · 𝑋 ) × 𝑌 ) = ( ( invg ‘ 𝑅 ) ‘ ( ( 𝑦 · 𝑋 ) × 𝑌 ) ) ) |
| 75 |
32
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ ) → ( 𝑋 × 𝑌 ) ∈ 𝐵 ) |
| 76 |
1 2 66
|
mulgneg |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ ( 𝑋 × 𝑌 ) ∈ 𝐵 ) → ( - 𝑦 · ( 𝑋 × 𝑌 ) ) = ( ( invg ‘ 𝑅 ) ‘ ( 𝑦 · ( 𝑋 × 𝑌 ) ) ) ) |
| 77 |
62 64 75 76
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ ) → ( - 𝑦 · ( 𝑋 × 𝑌 ) ) = ( ( invg ‘ 𝑅 ) ‘ ( 𝑦 · ( 𝑋 × 𝑌 ) ) ) ) |
| 78 |
74 77
|
eqeq12d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ ) → ( ( ( - 𝑦 · 𝑋 ) × 𝑌 ) = ( - 𝑦 · ( 𝑋 × 𝑌 ) ) ↔ ( ( invg ‘ 𝑅 ) ‘ ( ( 𝑦 · 𝑋 ) × 𝑌 ) ) = ( ( invg ‘ 𝑅 ) ‘ ( 𝑦 · ( 𝑋 × 𝑌 ) ) ) ) ) |
| 79 |
61 78
|
imbitrrid |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ ℕ ) → ( ( ( 𝑦 · 𝑋 ) × 𝑌 ) = ( 𝑦 · ( 𝑋 × 𝑌 ) ) → ( ( - 𝑦 · 𝑋 ) × 𝑌 ) = ( - 𝑦 · ( 𝑋 × 𝑌 ) ) ) ) |
| 80 |
79
|
ex |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑦 ∈ ℕ → ( ( ( 𝑦 · 𝑋 ) × 𝑌 ) = ( 𝑦 · ( 𝑋 × 𝑌 ) ) → ( ( - 𝑦 · 𝑋 ) × 𝑌 ) = ( - 𝑦 · ( 𝑋 × 𝑌 ) ) ) ) ) |
| 81 |
7 11 15 19 23 35 60 80
|
zindd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ∈ ℤ → ( ( 𝑁 · 𝑋 ) × 𝑌 ) = ( 𝑁 · ( 𝑋 × 𝑌 ) ) ) ) |
| 82 |
81
|
3exp |
⊢ ( 𝑅 ∈ Ring → ( 𝑌 ∈ 𝐵 → ( 𝑋 ∈ 𝐵 → ( 𝑁 ∈ ℤ → ( ( 𝑁 · 𝑋 ) × 𝑌 ) = ( 𝑁 · ( 𝑋 × 𝑌 ) ) ) ) ) ) |
| 83 |
82
|
com24 |
⊢ ( 𝑅 ∈ Ring → ( 𝑁 ∈ ℤ → ( 𝑋 ∈ 𝐵 → ( 𝑌 ∈ 𝐵 → ( ( 𝑁 · 𝑋 ) × 𝑌 ) = ( 𝑁 · ( 𝑋 × 𝑌 ) ) ) ) ) ) |
| 84 |
83
|
3imp2 |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑁 · 𝑋 ) × 𝑌 ) = ( 𝑁 · ( 𝑋 × 𝑌 ) ) ) |