| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zindd.1 | ⊢ ( 𝑥  =  0  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 2 |  | zindd.2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝜑  ↔  𝜒 ) ) | 
						
							| 3 |  | zindd.3 | ⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  ( 𝜑  ↔  𝜏 ) ) | 
						
							| 4 |  | zindd.4 | ⊢ ( 𝑥  =  - 𝑦  →  ( 𝜑  ↔  𝜃 ) ) | 
						
							| 5 |  | zindd.5 | ⊢ ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜂 ) ) | 
						
							| 6 |  | zindd.6 | ⊢ ( 𝜁  →  𝜓 ) | 
						
							| 7 |  | zindd.7 | ⊢ ( 𝜁  →  ( 𝑦  ∈  ℕ0  →  ( 𝜒  →  𝜏 ) ) ) | 
						
							| 8 |  | zindd.8 | ⊢ ( 𝜁  →  ( 𝑦  ∈  ℕ  →  ( 𝜒  →  𝜃 ) ) ) | 
						
							| 9 |  | znegcl | ⊢ ( 𝑦  ∈  ℤ  →  - 𝑦  ∈  ℤ ) | 
						
							| 10 |  | elznn0nn | ⊢ ( - 𝑦  ∈  ℤ  ↔  ( - 𝑦  ∈  ℕ0  ∨  ( - 𝑦  ∈  ℝ  ∧  - - 𝑦  ∈  ℕ ) ) ) | 
						
							| 11 | 9 10 | sylib | ⊢ ( 𝑦  ∈  ℤ  →  ( - 𝑦  ∈  ℕ0  ∨  ( - 𝑦  ∈  ℝ  ∧  - - 𝑦  ∈  ℕ ) ) ) | 
						
							| 12 |  | simpr | ⊢ ( ( - 𝑦  ∈  ℝ  ∧  - - 𝑦  ∈  ℕ )  →  - - 𝑦  ∈  ℕ ) | 
						
							| 13 | 12 | orim2i | ⊢ ( ( - 𝑦  ∈  ℕ0  ∨  ( - 𝑦  ∈  ℝ  ∧  - - 𝑦  ∈  ℕ ) )  →  ( - 𝑦  ∈  ℕ0  ∨  - - 𝑦  ∈  ℕ ) ) | 
						
							| 14 | 11 13 | syl | ⊢ ( 𝑦  ∈  ℤ  →  ( - 𝑦  ∈  ℕ0  ∨  - - 𝑦  ∈  ℕ ) ) | 
						
							| 15 |  | zcn | ⊢ ( 𝑦  ∈  ℤ  →  𝑦  ∈  ℂ ) | 
						
							| 16 | 15 | negnegd | ⊢ ( 𝑦  ∈  ℤ  →  - - 𝑦  =  𝑦 ) | 
						
							| 17 | 16 | eleq1d | ⊢ ( 𝑦  ∈  ℤ  →  ( - - 𝑦  ∈  ℕ  ↔  𝑦  ∈  ℕ ) ) | 
						
							| 18 | 17 | orbi2d | ⊢ ( 𝑦  ∈  ℤ  →  ( ( - 𝑦  ∈  ℕ0  ∨  - - 𝑦  ∈  ℕ )  ↔  ( - 𝑦  ∈  ℕ0  ∨  𝑦  ∈  ℕ ) ) ) | 
						
							| 19 | 14 18 | mpbid | ⊢ ( 𝑦  ∈  ℤ  →  ( - 𝑦  ∈  ℕ0  ∨  𝑦  ∈  ℕ ) ) | 
						
							| 20 | 1 | imbi2d | ⊢ ( 𝑥  =  0  →  ( ( 𝜁  →  𝜑 )  ↔  ( 𝜁  →  𝜓 ) ) ) | 
						
							| 21 | 2 | imbi2d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝜁  →  𝜑 )  ↔  ( 𝜁  →  𝜒 ) ) ) | 
						
							| 22 | 3 | imbi2d | ⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  ( ( 𝜁  →  𝜑 )  ↔  ( 𝜁  →  𝜏 ) ) ) | 
						
							| 23 | 4 | imbi2d | ⊢ ( 𝑥  =  - 𝑦  →  ( ( 𝜁  →  𝜑 )  ↔  ( 𝜁  →  𝜃 ) ) ) | 
						
							| 24 | 7 | com12 | ⊢ ( 𝑦  ∈  ℕ0  →  ( 𝜁  →  ( 𝜒  →  𝜏 ) ) ) | 
						
							| 25 | 24 | a2d | ⊢ ( 𝑦  ∈  ℕ0  →  ( ( 𝜁  →  𝜒 )  →  ( 𝜁  →  𝜏 ) ) ) | 
						
							| 26 | 20 21 22 23 6 25 | nn0ind | ⊢ ( - 𝑦  ∈  ℕ0  →  ( 𝜁  →  𝜃 ) ) | 
						
							| 27 | 26 | com12 | ⊢ ( 𝜁  →  ( - 𝑦  ∈  ℕ0  →  𝜃 ) ) | 
						
							| 28 | 20 21 22 21 6 25 | nn0ind | ⊢ ( 𝑦  ∈  ℕ0  →  ( 𝜁  →  𝜒 ) ) | 
						
							| 29 |  | nnnn0 | ⊢ ( 𝑦  ∈  ℕ  →  𝑦  ∈  ℕ0 ) | 
						
							| 30 | 28 29 | syl11 | ⊢ ( 𝜁  →  ( 𝑦  ∈  ℕ  →  𝜒 ) ) | 
						
							| 31 | 30 8 | mpdd | ⊢ ( 𝜁  →  ( 𝑦  ∈  ℕ  →  𝜃 ) ) | 
						
							| 32 | 27 31 | jaod | ⊢ ( 𝜁  →  ( ( - 𝑦  ∈  ℕ0  ∨  𝑦  ∈  ℕ )  →  𝜃 ) ) | 
						
							| 33 | 19 32 | syl5 | ⊢ ( 𝜁  →  ( 𝑦  ∈  ℤ  →  𝜃 ) ) | 
						
							| 34 | 33 | ralrimiv | ⊢ ( 𝜁  →  ∀ 𝑦  ∈  ℤ 𝜃 ) | 
						
							| 35 |  | znegcl | ⊢ ( 𝑥  ∈  ℤ  →  - 𝑥  ∈  ℤ ) | 
						
							| 36 |  | negeq | ⊢ ( 𝑦  =  - 𝑥  →  - 𝑦  =  - - 𝑥 ) | 
						
							| 37 |  | zcn | ⊢ ( 𝑥  ∈  ℤ  →  𝑥  ∈  ℂ ) | 
						
							| 38 | 37 | negnegd | ⊢ ( 𝑥  ∈  ℤ  →  - - 𝑥  =  𝑥 ) | 
						
							| 39 | 36 38 | sylan9eqr | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  =  - 𝑥 )  →  - 𝑦  =  𝑥 ) | 
						
							| 40 | 39 | eqcomd | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  =  - 𝑥 )  →  𝑥  =  - 𝑦 ) | 
						
							| 41 | 40 4 | syl | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  =  - 𝑥 )  →  ( 𝜑  ↔  𝜃 ) ) | 
						
							| 42 | 41 | bicomd | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑦  =  - 𝑥 )  →  ( 𝜃  ↔  𝜑 ) ) | 
						
							| 43 | 35 42 | rspcdv | ⊢ ( 𝑥  ∈  ℤ  →  ( ∀ 𝑦  ∈  ℤ 𝜃  →  𝜑 ) ) | 
						
							| 44 | 43 | com12 | ⊢ ( ∀ 𝑦  ∈  ℤ 𝜃  →  ( 𝑥  ∈  ℤ  →  𝜑 ) ) | 
						
							| 45 | 44 | ralrimiv | ⊢ ( ∀ 𝑦  ∈  ℤ 𝜃  →  ∀ 𝑥  ∈  ℤ 𝜑 ) | 
						
							| 46 | 5 | rspccv | ⊢ ( ∀ 𝑥  ∈  ℤ 𝜑  →  ( 𝐴  ∈  ℤ  →  𝜂 ) ) | 
						
							| 47 | 34 45 46 | 3syl | ⊢ ( 𝜁  →  ( 𝐴  ∈  ℤ  →  𝜂 ) ) |