Step |
Hyp |
Ref |
Expression |
1 |
|
fzindd.1 |
⊢ ( 𝑥 = 𝑀 → ( 𝜓 ↔ 𝜒 ) ) |
2 |
|
fzindd.2 |
⊢ ( 𝑥 = 𝑦 → ( 𝜓 ↔ 𝜃 ) ) |
3 |
|
fzindd.3 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝜓 ↔ 𝜏 ) ) |
4 |
|
fzindd.4 |
⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜂 ) ) |
5 |
|
fzindd.5 |
⊢ ( 𝜑 → 𝜒 ) |
6 |
|
fzindd.6 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) ∧ 𝜃 ) → 𝜏 ) |
7 |
|
fzindd.7 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
8 |
|
fzindd.8 |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
9 |
|
fzindd.9 |
⊢ ( 𝜑 → 𝑀 ≤ 𝑁 ) |
10 |
7 8
|
jca |
⊢ ( 𝜑 → ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) |
11 |
1
|
imbi2d |
⊢ ( 𝑥 = 𝑀 → ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → 𝜒 ) ) ) |
12 |
2
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → 𝜃 ) ) ) |
13 |
3
|
imbi2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → 𝜏 ) ) ) |
14 |
4
|
imbi2d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → 𝜂 ) ) ) |
15 |
5
|
a1i |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) → ( 𝜑 → 𝜒 ) ) |
16 |
6
|
3expa |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) ) ∧ 𝜃 ) → 𝜏 ) |
17 |
16
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) ) → ( 𝜃 → 𝜏 ) ) |
18 |
17
|
expcom |
⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) → ( 𝜑 → ( 𝜃 → 𝜏 ) ) ) |
19 |
18
|
a2d |
⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) → ( ( 𝜑 → 𝜃 ) → ( 𝜑 → 𝜏 ) ) ) |
20 |
19
|
adantl |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) ) → ( ( 𝜑 → 𝜃 ) → ( 𝜑 → 𝜏 ) ) ) |
21 |
11 12 13 14 15 20
|
fzind |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐴 ∈ ℤ ∧ 𝑀 ≤ 𝐴 ∧ 𝐴 ≤ 𝑁 ) ) → ( 𝜑 → 𝜂 ) ) |
22 |
10 21
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ ℤ ∧ 𝑀 ≤ 𝐴 ∧ 𝐴 ≤ 𝑁 ) ) → ( 𝜑 → 𝜂 ) ) |
23 |
22
|
imp |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ∈ ℤ ∧ 𝑀 ≤ 𝐴 ∧ 𝐴 ≤ 𝑁 ) ) ∧ 𝜑 ) → 𝜂 ) |
24 |
23
|
anabss1 |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ ℤ ∧ 𝑀 ≤ 𝐴 ∧ 𝐴 ≤ 𝑁 ) ) → 𝜂 ) |