| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fzindd.1 |
⊢ ( 𝑥 = 𝑀 → ( 𝜓 ↔ 𝜒 ) ) |
| 2 |
|
fzindd.2 |
⊢ ( 𝑥 = 𝑦 → ( 𝜓 ↔ 𝜃 ) ) |
| 3 |
|
fzindd.3 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝜓 ↔ 𝜏 ) ) |
| 4 |
|
fzindd.4 |
⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜂 ) ) |
| 5 |
|
fzindd.5 |
⊢ ( 𝜑 → 𝜒 ) |
| 6 |
|
fzindd.6 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) ∧ 𝜃 ) → 𝜏 ) |
| 7 |
|
fzindd.7 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 8 |
|
fzindd.8 |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 9 |
|
fzindd.9 |
⊢ ( 𝜑 → 𝑀 ≤ 𝑁 ) |
| 10 |
7 8
|
jca |
⊢ ( 𝜑 → ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) |
| 11 |
1
|
imbi2d |
⊢ ( 𝑥 = 𝑀 → ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → 𝜒 ) ) ) |
| 12 |
2
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → 𝜃 ) ) ) |
| 13 |
3
|
imbi2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → 𝜏 ) ) ) |
| 14 |
4
|
imbi2d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → 𝜂 ) ) ) |
| 15 |
5
|
a1i |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) → ( 𝜑 → 𝜒 ) ) |
| 16 |
6
|
3expa |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) ) ∧ 𝜃 ) → 𝜏 ) |
| 17 |
16
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) ) → ( 𝜃 → 𝜏 ) ) |
| 18 |
17
|
expcom |
⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) → ( 𝜑 → ( 𝜃 → 𝜏 ) ) ) |
| 19 |
18
|
a2d |
⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) → ( ( 𝜑 → 𝜃 ) → ( 𝜑 → 𝜏 ) ) ) |
| 20 |
19
|
adantl |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) ) → ( ( 𝜑 → 𝜃 ) → ( 𝜑 → 𝜏 ) ) ) |
| 21 |
11 12 13 14 15 20
|
fzind |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐴 ∈ ℤ ∧ 𝑀 ≤ 𝐴 ∧ 𝐴 ≤ 𝑁 ) ) → ( 𝜑 → 𝜂 ) ) |
| 22 |
10 21
|
sylan |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ ℤ ∧ 𝑀 ≤ 𝐴 ∧ 𝐴 ≤ 𝑁 ) ) → ( 𝜑 → 𝜂 ) ) |
| 23 |
22
|
imp |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ∈ ℤ ∧ 𝑀 ≤ 𝐴 ∧ 𝐴 ≤ 𝑁 ) ) ∧ 𝜑 ) → 𝜂 ) |
| 24 |
23
|
anabss1 |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ ℤ ∧ 𝑀 ≤ 𝐴 ∧ 𝐴 ≤ 𝑁 ) ) → 𝜂 ) |