Step |
Hyp |
Ref |
Expression |
1 |
|
uzindd.1 |
⊢ ( 𝑗 = 𝑀 → ( 𝜓 ↔ 𝜒 ) ) |
2 |
|
uzindd.2 |
⊢ ( 𝑗 = 𝑘 → ( 𝜓 ↔ 𝜃 ) ) |
3 |
|
uzindd.3 |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝜓 ↔ 𝜏 ) ) |
4 |
|
uzindd.4 |
⊢ ( 𝑗 = 𝑁 → ( 𝜓 ↔ 𝜂 ) ) |
5 |
|
uzindd.5 |
⊢ ( 𝜑 → 𝜒 ) |
6 |
|
uzindd.6 |
⊢ ( ( 𝜑 ∧ 𝜃 ∧ ( 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ) ) → 𝜏 ) |
7 |
|
uzindd.7 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
8 |
|
uzindd.8 |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
9 |
|
uzindd.9 |
⊢ ( 𝜑 → 𝑀 ≤ 𝑁 ) |
10 |
7 8 9
|
3jca |
⊢ ( 𝜑 → ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) ) |
11 |
1
|
imbi2d |
⊢ ( 𝑗 = 𝑀 → ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → 𝜒 ) ) ) |
12 |
2
|
imbi2d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → 𝜃 ) ) ) |
13 |
3
|
imbi2d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → 𝜏 ) ) ) |
14 |
4
|
imbi2d |
⊢ ( 𝑗 = 𝑁 → ( ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → 𝜂 ) ) ) |
15 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → 𝜒 ) |
16 |
15
|
expcom |
⊢ ( 𝑀 ∈ ℤ → ( 𝜑 → 𝜒 ) ) |
17 |
|
3anass |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ) ↔ ( 𝑀 ∈ ℤ ∧ ( 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ) ) ) |
18 |
|
ancom |
⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ) ) ↔ ( ( 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑀 ∈ ℤ ) ) |
19 |
17 18
|
bitri |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ) ↔ ( ( 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑀 ∈ ℤ ) ) |
20 |
6
|
ad4ant123 |
⊢ ( ( ( ( 𝜑 ∧ 𝜃 ) ∧ ( 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ) ) ∧ 𝑀 ∈ ℤ ) → 𝜏 ) |
21 |
20
|
anasss |
⊢ ( ( ( 𝜑 ∧ 𝜃 ) ∧ ( ( 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑀 ∈ ℤ ) ) → 𝜏 ) |
22 |
19 21
|
sylan2b |
⊢ ( ( ( 𝜑 ∧ 𝜃 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ) ) → 𝜏 ) |
23 |
22
|
3impa |
⊢ ( ( 𝜑 ∧ 𝜃 ∧ ( 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ) ) → 𝜏 ) |
24 |
23
|
3com23 |
⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ) ∧ 𝜃 ) → 𝜏 ) |
25 |
24
|
3expia |
⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ) ) → ( 𝜃 → 𝜏 ) ) |
26 |
25
|
expcom |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ) → ( 𝜑 → ( 𝜃 → 𝜏 ) ) ) |
27 |
26
|
a2d |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ) → ( ( 𝜑 → 𝜃 ) → ( 𝜑 → 𝜏 ) ) ) |
28 |
11 12 13 14 16 27
|
uzind |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) → ( 𝜑 → 𝜂 ) ) |
29 |
10 28
|
mpcom |
⊢ ( 𝜑 → 𝜂 ) |