Step |
Hyp |
Ref |
Expression |
1 |
|
uzindd.1 |
|- ( j = M -> ( ps <-> ch ) ) |
2 |
|
uzindd.2 |
|- ( j = k -> ( ps <-> th ) ) |
3 |
|
uzindd.3 |
|- ( j = ( k + 1 ) -> ( ps <-> ta ) ) |
4 |
|
uzindd.4 |
|- ( j = N -> ( ps <-> et ) ) |
5 |
|
uzindd.5 |
|- ( ph -> ch ) |
6 |
|
uzindd.6 |
|- ( ( ph /\ th /\ ( k e. ZZ /\ M <_ k ) ) -> ta ) |
7 |
|
uzindd.7 |
|- ( ph -> M e. ZZ ) |
8 |
|
uzindd.8 |
|- ( ph -> N e. ZZ ) |
9 |
|
uzindd.9 |
|- ( ph -> M <_ N ) |
10 |
7 8 9
|
3jca |
|- ( ph -> ( M e. ZZ /\ N e. ZZ /\ M <_ N ) ) |
11 |
1
|
imbi2d |
|- ( j = M -> ( ( ph -> ps ) <-> ( ph -> ch ) ) ) |
12 |
2
|
imbi2d |
|- ( j = k -> ( ( ph -> ps ) <-> ( ph -> th ) ) ) |
13 |
3
|
imbi2d |
|- ( j = ( k + 1 ) -> ( ( ph -> ps ) <-> ( ph -> ta ) ) ) |
14 |
4
|
imbi2d |
|- ( j = N -> ( ( ph -> ps ) <-> ( ph -> et ) ) ) |
15 |
5
|
adantr |
|- ( ( ph /\ M e. ZZ ) -> ch ) |
16 |
15
|
expcom |
|- ( M e. ZZ -> ( ph -> ch ) ) |
17 |
|
3anass |
|- ( ( M e. ZZ /\ k e. ZZ /\ M <_ k ) <-> ( M e. ZZ /\ ( k e. ZZ /\ M <_ k ) ) ) |
18 |
|
ancom |
|- ( ( M e. ZZ /\ ( k e. ZZ /\ M <_ k ) ) <-> ( ( k e. ZZ /\ M <_ k ) /\ M e. ZZ ) ) |
19 |
17 18
|
bitri |
|- ( ( M e. ZZ /\ k e. ZZ /\ M <_ k ) <-> ( ( k e. ZZ /\ M <_ k ) /\ M e. ZZ ) ) |
20 |
6
|
ad4ant123 |
|- ( ( ( ( ph /\ th ) /\ ( k e. ZZ /\ M <_ k ) ) /\ M e. ZZ ) -> ta ) |
21 |
20
|
anasss |
|- ( ( ( ph /\ th ) /\ ( ( k e. ZZ /\ M <_ k ) /\ M e. ZZ ) ) -> ta ) |
22 |
19 21
|
sylan2b |
|- ( ( ( ph /\ th ) /\ ( M e. ZZ /\ k e. ZZ /\ M <_ k ) ) -> ta ) |
23 |
22
|
3impa |
|- ( ( ph /\ th /\ ( M e. ZZ /\ k e. ZZ /\ M <_ k ) ) -> ta ) |
24 |
23
|
3com23 |
|- ( ( ph /\ ( M e. ZZ /\ k e. ZZ /\ M <_ k ) /\ th ) -> ta ) |
25 |
24
|
3expia |
|- ( ( ph /\ ( M e. ZZ /\ k e. ZZ /\ M <_ k ) ) -> ( th -> ta ) ) |
26 |
25
|
expcom |
|- ( ( M e. ZZ /\ k e. ZZ /\ M <_ k ) -> ( ph -> ( th -> ta ) ) ) |
27 |
26
|
a2d |
|- ( ( M e. ZZ /\ k e. ZZ /\ M <_ k ) -> ( ( ph -> th ) -> ( ph -> ta ) ) ) |
28 |
11 12 13 14 16 27
|
uzind |
|- ( ( M e. ZZ /\ N e. ZZ /\ M <_ N ) -> ( ph -> et ) ) |
29 |
10 28
|
mpcom |
|- ( ph -> et ) |